, Volume 128, Issue 3, pp 181–198 | Cite as

Crossing and zipping: molecular duties of the ZMM proteins in meiosis

  • Alexandra Pyatnitskaya
  • Valérie BordeEmail author
  • Arnaud De MuytEmail author


Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.


Meiosis Crossover Recombination Synaptonemal complex ZMM 



We thank Nancy Hollingsworth, Denise Zickler, and Wayne Crismani for critical reading of the manuscript.

Funding information

Work in the V.B. lab is funded by Institut Curie, CNRS, Labex DEEP (ANR-11-LBX-0044), ANR (ANR-15-CE11-0011), Projet Fondation ARC, La Ligue contre le Cancer, and Electricité de France. A. P. is funded by a doctoral fellowship from PSL University.


  1. Adelman CA, Petrini JH (2008) ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLoS Genet 4:e1000042PubMedPubMedCentralGoogle Scholar
  2. Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245–255PubMedGoogle Scholar
  3. Ahuja JS, Sandhu R, Mainpal R, Lawson C, Henley H, Hunt PA, Yanowitz JL, Börner GV (2017) Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 355:408–411PubMedPubMedCentralGoogle Scholar
  4. Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and A. fistulosum. I: the initiation and sequence of pairing. Chromosoma 95:324–338Google Scholar
  5. Allers T, Lichten M (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57PubMedPubMedCentralGoogle Scholar
  6. Argueso JL, Wanat J, Gemici Z, Alani E (2004) Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168:1805–1816PubMedPubMedCentralGoogle Scholar
  7. Arora K, Corbett KD (2019) The conserved XPF:ERCC1-like Zip2:Spo16 complex controls meiotic crossover formation through structure-specific DNA binding. Nucleic Acids Res 47:2365–2376PubMedGoogle Scholar
  8. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998PubMedGoogle Scholar
  9. Berchowitz LE, Copenhaver GP (2010) Genetic interference: don’t stand so close to me. Curr Genomics 11:91–102PubMedPubMedCentralGoogle Scholar
  10. Bhalla N, Wynne DJ, Jantsch V, Dernburg AF (2008) ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and bivalent formation in C. elegans. PLoS Genet 4:e1000235PubMedPubMedCentralGoogle Scholar
  11. Bishop DK, Zickler D (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15PubMedGoogle Scholar
  12. Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:791–802PubMedGoogle Scholar
  13. Börner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45PubMedGoogle Scholar
  14. Cahoon CK, Hawley RS (2016) Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 23:369–377Google Scholar
  15. Callender TL, Laureau R, Wan L, Chen X, Sandhu R, Laljee S, Zhou S, Suhandynata RT, Prugar E, Gaines WA, Kwon YH, Börner GV, Nicolas A, Neiman AM, Hollingsworth NM (2016) Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1. PLoS Genet 12:e1006226PubMedPubMedCentralGoogle Scholar
  16. Campbell CS, Hombauer H, Srivatsan A, Bowen N, Gries K, Desai A, Putnam CD, Kolodner RD (2014) Mlh2 is an accessory factor for DNA mismatch repair in Saccharomyces cerevisiae. PLoS Genet 10:e1004327PubMedPubMedCentralGoogle Scholar
  17. Cannavo E, Cejka P (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514:122–125PubMedGoogle Scholar
  18. Chelysheva L, Gendrot G, Vezon D, Doutriaux MP, Mercier R, Grelon M (2007) Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana. PLoS Genet 3:e83PubMedPubMedCentralGoogle Scholar
  19. Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, Vrielynck N, le Guin S, Novatchkova M, Grelon M (2012) The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet 8:e1002799PubMedPubMedCentralGoogle Scholar
  20. Chen C, Zhang W, Timofejeva L, Gerardin Y, Ma H (2005) The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation. Plant J 43:321–334PubMedGoogle Scholar
  21. Chen SY, Tsubouchi T, Rockmill B, Sandler JS, Richards DR, Vader G, Hochwagen A, Roeder GS, Fung JC (2008) Global analysis of the meiotic crossover landscape. Dev Cell 15:401–415PubMedPubMedCentralGoogle Scholar
  22. Chen X, Suhandynata RT, Sandhu R, Rockmill B, Mohibullah N, Niu H, Liang J, Lo HC, Miller DE, Zhou H, Börner GV, Hollingsworth NM (2015) Phosphorylation of the Synaptonemal complex protein Zip1 regulates the crossover/noncrossover decision during yeast meiosis. PLoS Biol 13:e1002329PubMedPubMedCentralGoogle Scholar
  23. Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20:2067–2081PubMedPubMedCentralGoogle Scholar
  24. Chua PR, Roeder GS (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93:349–359PubMedGoogle Scholar
  25. Colaiácovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, Villeneuve AM (2003) Synaptonemal complex assembly in C. elegans is dispensable for loading Strand-exchange proteins but critical for proper completion of recombination. Dev Cell 5:463–474PubMedGoogle Scholar
  26. Cooper TJ, Garcia V, Neale MJ (2016) Meiotic DSB patterning: a multifaceted process. Cell Cycle 15:13–21PubMedPubMedCentralGoogle Scholar
  27. D'Andrea L, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662PubMedGoogle Scholar
  28. de los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth NM (2003) The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164:81–94PubMedPubMedCentralGoogle Scholar
  29. De Muyt A et al (2009) A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet 5:e1000654PubMedPubMedCentralGoogle Scholar
  30. De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M (2012) BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism. Mol Cell 46:43–53PubMedPubMedCentralGoogle Scholar
  31. De Muyt A, Zhang L, Piolot T, Kleckner N, Espagne E, Zickler D (2014) E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev 28:1111–1123PubMedPubMedCentralGoogle Scholar
  32. De Muyt A et al (2018) A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev 32:283–296PubMedPubMedCentralGoogle Scholar
  33. de Vries SS, Baart EB, Dekker M, Siezen A, Rooij DG, Boer P, Riele H (1999) Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 13:523–531PubMedPubMedCentralGoogle Scholar
  34. de Vries FAT, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland A, Heyting C, Pastink A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389PubMedPubMedCentralGoogle Scholar
  35. del Cacho E, Pages M, Gallego M, Monteagudo L, Sánchez-Acedo C (2005) Synaptonemal complex karyotype of Eimeria tenella. Int J Parasitol 35:1445–1451PubMedGoogle Scholar
  36. Dong H, Roeder GS (2000) Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J Cell Biol 148:417–426PubMedPubMedCentralGoogle Scholar
  37. Dubois E, de Muyt A, Soyer JL, Budin K, Legras M, Piolot T, Debuchy R, Kleckner N, Zickler D, Espagne E (2019) Building bridges to move recombination complexes. In: Proc Natl Acad Sci U S a, p 201901237Google Scholar
  38. Duroc Y, Kumar R, Ranjha L, Adam C, Guérois R, Md Muntaz K, Marsolier-Kergoat MC, Dingli F, Laureau R, Loew D, Llorente B, Charbonnier JB, Cejka P, Borde V (2017) Concerted action of the MutLbeta heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. Elife 6:e21900PubMedPubMedCentralGoogle Scholar
  39. Edelmann W, Cohen PE, Kneitz B, Winand N, Lia M, Heyer J, Kolodner R, Pollard JW, Kucherlapati R (1999) Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet 21:123–127PubMedGoogle Scholar
  40. Espagne E, Vasnier C, Storlazzi A, Kleckner NE, Silar P, Zickler D, Malagnac F (2011) Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis. Proc Natl Acad Sci U S A 108:10614–10619PubMedPubMedCentralGoogle Scholar
  41. Falk JE, Chan AC, Hoffmann E, Hochwagen A (2010) A Mec1- and PP4-dependent checkpoint couples centromere pairing to meiotic recombination. Dev Cell 19:599–611PubMedGoogle Scholar
  42. Fraune J, Brochier-Armanet C, Alsheimer M, Volff JN, Schucker K, Benavente R (2016) Evolutionary history of the mammalian synaptonemal complex. Chromosoma 125:355–360Google Scholar
  43. Fung JC, Rockmill B, Odell M, Roeder GS (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:795–802PubMedGoogle Scholar
  44. Gao J, Colaiacovo MP (2018) Zipping and unzipping: protein modifications regulating synaptonemal complex dynamics. Trends Genet 34:232–245PubMedGoogle Scholar
  45. Garcia V, Phelps SE, Gray S, Neale MJ (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479:241–244PubMedPubMedCentralGoogle Scholar
  46. Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ (2015) Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 520:114–118PubMedGoogle Scholar
  47. Gray S, Cohen PE (2016) Control of meiotic crossovers: from double-Strand break formation to designation. Annu Rev Genet 50:175–210PubMedPubMedCentralGoogle Scholar
  48. Guiraldelli MF, Eyster C, Wilkerson JL, Dresser ME, Pezza RJ (2013) Mouse HFM1/Mer3 is required for crossover formation and complete synapsis of homologous chromosomes during meiosis. PLoS Genet 9:e1003383PubMedPubMedCentralGoogle Scholar
  49. Guiraldelli MF, Felberg A, Almeida LP, Parikh A, Castro RO, Pezza RJ (2018) SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis. PLoS Genet 14:e1007381PubMedPubMedCentralGoogle Scholar
  50. Hayashi M, Mlynarczyk-Evans S, Villeneuve AM (2010) The synaptonemal complex shapes the crossover landscape through cooperative assembly, crossover promotion and crossover inhibition during Caenorhabditis elegans meiosis. Genetics 186:45–58PubMedPubMedCentralGoogle Scholar
  51. He W et al (2018) The crossover function of MutSγ is activated via Cdc7-dependent stabilization of Msh4. BioRxiv.
  52. Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci U S A 101:4519–4524PubMedPubMedCentralGoogle Scholar
  53. Higgins JD, Armstrong SJ, Franklin FCH, Jones GH (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18:2557–2570PubMedPubMedCentralGoogle Scholar
  54. Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FCH (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500PubMedPubMedCentralGoogle Scholar
  55. Higgins JD, Vignard J, Mercier R, Pugh AG, Franklin FCH, Jones GH (2008) AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. Plant J 55:28–39PubMedGoogle Scholar
  56. Hollingsworth NM, Gaglione R (2019) The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr Genet 65:631–641PubMedGoogle Scholar
  57. Hollingsworth NM, Ponte L (1997) Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae. Genetics 147:33–42PubMedPubMedCentralGoogle Scholar
  58. Hollingsworth NM, Ponte L, Halsey C (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9:1728–1739PubMedGoogle Scholar
  59. Hooker GW, Roeder GS (2006) A role for SUMO in meiotic chromosome synapsis. Curr Biol 16:1238–1243PubMedGoogle Scholar
  60. Humphryes N, Hochwagen A (2014) A non-sister act: recombination template choice during meiosis. Exp Cell Res 329:53–60PubMedPubMedCentralGoogle Scholar
  61. Humphryes N, Leung WK, Argunhan B, Terentyev Y, Dvorackova M, Tsubouchi H (2013) The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet 9:e1003194PubMedPubMedCentralGoogle Scholar
  62. Hunter N (2015) Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol.
  63. Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:59–70PubMedGoogle Scholar
  64. Jantsch V, Pasierbek P, Mueller MM, Schweizer D, Jantsch M, Loidl J (2004) Targeted gene knockout reveals a role in meiotic recombination for ZHP-3, a Zip3-related protein in Caenorhabditis elegans. Mol Cell Biol 24:7998–8006PubMedPubMedCentralGoogle Scholar
  65. Jessop L, Rockmill B, Roeder GS, Lichten M (2006) Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of Sgs1. PLoS Genet 2:e155PubMedPubMedCentralGoogle Scholar
  66. Joyce EF, Pedersen M, Tiong S, White-Brown SK, Paul A, Campbell SD, McKim KS (2011) Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair. J Cell Biol 195:359–367PubMedPubMedCentralGoogle Scholar
  67. Kauppi L, Barchi M, Lange J, Baudat F, Jasin M, Keeney S (2013) Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev 27:873–886PubMedPubMedCentralGoogle Scholar
  68. Kaur H, De Muyt A, Lichten M (2015) Top3-Rmi1 DNA single-Strand Decatenase is integral to the formation and resolution of meiotic recombination intermediates. Mol Cell 57:583–594PubMedPubMedCentralGoogle Scholar
  69. Keeney S, Lange J, Mohibullah N (2014) Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 48:187–214PubMedPubMedCentralGoogle Scholar
  70. Kelly KO, Dernburg AF, Stanfield GM, Villeneuve AM (2000) Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics 156:617–630PubMedPubMedCentralGoogle Scholar
  71. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180PubMedGoogle Scholar
  72. Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14:1085–1097PubMedPubMedCentralGoogle Scholar
  73. Kong A, Thorleifsson G, Stefansson H, Masson G, Helgason A, Gudbjartsson DF, Jonsdottir GM, Gudjonsson SA, Sverrisson S, Thorlacius T, Jonasdottir A, Hardarson GA, Palsson ST, Frigge ML, Gulcher JR, Thorsteinsdottir U, Stefansson K (2008) Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319:1398–1401PubMedPubMedCentralGoogle Scholar
  74. Lake CM, Nielsen RJ, Guo F, Unruh JR, Slaughter BD, Hawley RS (2015) Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila. eLife 4:e08287PubMedPubMedCentralGoogle Scholar
  75. Lam I, Keeney S (2014) Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 7:a016634PubMedGoogle Scholar
  76. Lange J, Yamada S, Tischfield SE, Pan J, Kim S, Zhu X, Socci ND, Jasin M, Keeney S (2016) The landscape of mouse meiotic double-Strand break formation, processing, and repair. Cell 167:695–708 e616PubMedPubMedCentralGoogle Scholar
  77. Lao JP, Oh SD, Shinohara M, Shinohara A, Hunter N (2008) Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 29:517–524PubMedPubMedCentralGoogle Scholar
  78. Leung W-K, Humphryes N, Afshar N, Argunhan B, Terentyev Y, Tsubouchi T, Tsubouchi H (2015) The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast. J Cell Biol 211:785–793PubMedPubMedCentralGoogle Scholar
  79. Li Y, Qin B, Shen Y, Zhang F, Liu C, You H, du G, Tang D, Cheng Z (2018) HEIP1 regulates crossover formation during meiosis in rice. Proc Natl Acad Sci U S A 115:10810–10815PubMedPubMedCentralGoogle Scholar
  80. Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM (2013) Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502:703–706PubMedPubMedCentralGoogle Scholar
  81. Macaisne N, Novatchkova M, Peirera L, Vezon D, Jolivet S, Froger N, Chelysheva L, Grelon M, Mercier R (2008) SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers. Curr Biol 18:1432–1437PubMedGoogle Scholar
  82. Macaisne N, Vignard J, Mercier R (2011) SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers. J Cell Sci 124:2687–2691PubMedGoogle Scholar
  83. MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 16:2428–2442PubMedPubMedCentralGoogle Scholar
  84. Maguire MP (1972) The temporal sequence of synaptic initiation, crossing over and synaptic completion. Genetics 70:353–370PubMedPubMedCentralGoogle Scholar
  85. Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454:479–485PubMedPubMedCentralGoogle Scholar
  86. Manhart CM, Alani E (2016) Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst) 38:84–93Google Scholar
  87. Marsolier-Kergoat MC, Khan MM, Schott J, Zhu X, Llorente B (2018) Mechanistic view and genetic control of DNA recombination during meiosis. Mol Cell 70:9–20 e26PubMedGoogle Scholar
  88. Mazina OM, Mazin AV, Nakagawa T, Kolodner RD, Kowalczykowski SC (2004) Saccharomyces cerevisiae Mer3 helicase stimulates 3′-5′ heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 117:47–56PubMedGoogle Scholar
  89. Mercier R, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, Nogué F, Doutriaux MP, Horlow C, Grelon M, Mézard C (2005) Two meiotic crossover classes cohabit in Arabidopsis: one is dependent on MER3,whereas the other one is not. Curr Biol 15:692–701PubMedGoogle Scholar
  90. Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327Google Scholar
  91. Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C (1992) A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 11:5091–5100PubMedPubMedCentralGoogle Scholar
  92. Mimitou EP, Yamada S, Keeney S (2017) A global view of meiotic double-strand break end resection. Science 355:40–45PubMedPubMedCentralGoogle Scholar
  93. Miyoshi T, Ito M, Kugou K, Yamada S, Furuichi M, Oda A, Yamada T, Hirota K, Masai H, Ohta K (2012) A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. Mol Cell 47:722–733PubMedGoogle Scholar
  94. Mohibullah N, Keeney S (2017) Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Res 27:278–288PubMedPubMedCentralGoogle Scholar
  95. Muller HJ (1916) The mechanism of crossing over. Am Nat 50:193–434Google Scholar
  96. Nakagawa T, Kolodner RD (2002a) The MER3 DNA helicase catalyzes the unwinding of Holliday junctions. J Biol Chem 277:28019–28024PubMedGoogle Scholar
  97. Nakagawa T, Kolodner RD (2002b) Saccharomyces cerevisiae Mer3 is a DNA helicase involved in meiotic crossing over. Mol Cell Biol 22:3281–3291PubMedPubMedCentralGoogle Scholar
  98. Nakagawa T, Ogawa H (1999) The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18:5714–5723PubMedPubMedCentralGoogle Scholar
  99. Nakagawa T, Flores-Rozas H, Kolodner RD (2001) The MER3 helicase involved in meiotic crossing over is stimulated by single-stranded DNA-binding proteins and unwinds DNA in the 3′ to 5′ direction. J Biol Chem 276:31487–31493PubMedPubMedCentralGoogle Scholar
  100. Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057PubMedPubMedCentralGoogle Scholar
  101. Nguyen H, Labella S, Silva N, Jantsch V, Zetka M (2018) C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLoS Genet 14:e1007776PubMedPubMedCentralGoogle Scholar
  102. Nishant KT, Plys AJ, Alani E (2008) A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae. Genetics 179:747–755PubMedPubMedCentralGoogle Scholar
  103. Nishant KT, Chen C, Shinohara M, Shinohara A, Alani E (2010) Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability. PLoS Genet 6:e1001083PubMedPubMedCentralGoogle Scholar
  104. Novak JE, Ross-Macdonald PB, Roeder GS (2001) The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158:1013–1025PubMedPubMedCentralGoogle Scholar
  105. Nur U (1968) Synapsis and crossing over within a paracentric inversion in the grasshopper, Camnula pellucida. Chromosoma 25:198–214PubMedGoogle Scholar
  106. Oh SD, Lao JP, Hwang PY, Taylor AF, Smith GR, Hunter N (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130:259–272PubMedPubMedCentralGoogle Scholar
  107. Oke A, Anderson CM, Yam P, Fung JC (2014) Controlling meiotic Recombinational repair - specifying the roles of ZMMs, Sgs1 and Mus81/Mms4 in crossover formation. PLoS Genet 10:e1004690PubMedPubMedCentralGoogle Scholar
  108. Page SL, Hawley RS (2001) c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15:3130–3143PubMedPubMedCentralGoogle Scholar
  109. Page SL, Hawley RS (2004) The genetics and molecular biology of the Synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558PubMedGoogle Scholar
  110. Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, Hochwagen A, Keeney S (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144:719–731PubMedPubMedCentralGoogle Scholar
  111. Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F (2011) Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146:372–383PubMedGoogle Scholar
  112. Perry J, Kleckner N, Borner GV (2005) Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc Natl Acad Sci U S A 102:17594–17599PubMedPubMedCentralGoogle Scholar
  113. Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC (1998) Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell 1:697–705PubMedGoogle Scholar
  114. Pochart P, Woltering D, Hollingsworth NM (1997) Conserved properties between functionally distinct MutS homologs in yeast. J Biol Chem 272:30345–30349PubMedGoogle Scholar
  115. Prugar E, Burnett C, Chen X, Hollingsworth NM (2017) Coordination of double Strand break repair and meiotic progression in yeast by a Mek1-Ndt80 negative feedback loop. Genetics 206:497–512PubMedPubMedCentralGoogle Scholar
  116. Psakhye I, Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151:807–820PubMedGoogle Scholar
  117. Qiao H, Prasada Rao HBD, Yang Y, Fong JH, Cloutier JM, Deacon DC, Nagel KE, Swartz RK, Strong E, Holloway JK, Cohen PE, Schimenti J, Ward J, Hunter N (2014) Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat Genet 46:194–199PubMedPubMedCentralGoogle Scholar
  118. Qiao H, Rao HBDP, Yun Y, Sandhu S, Fong JH, Sapre M, Nguyen M, Tham A, van BW, Chng TYH, Lee A, Hunter N (2018) Impeding DNA break repair enables oocyte quality control. Mol Cell 72:211–221 e213PubMedPubMedCentralGoogle Scholar
  119. Rakshambikai R, Srinivasan N, Nishant KT (2013) Structural insights into Saccharomyces cerevisiae Msh4–Msh5 complex function using homology modeling. PLoS One 8:e78753PubMedPubMedCentralGoogle Scholar
  120. Rao HBDP, Qiao H, Bhatt SK, Bailey LRJ, Tran HD, Bourne SL, Qiu W, Deshpande A, Sharma AN, Beebout CJ, Pezza RJ, Hunter N (2017) A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355:403–407Google Scholar
  121. Reynolds A, Qiao H, Yang Y, Chen JK, Jackson N, Biswas K, Holloway JK, Baudat F, de Massy B, Wang J, Höög C, Cohen PE, Hunter N (2013) RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat Genet 45:269–278PubMedPubMedCentralGoogle Scholar
  122. Robert T, Vrielynck N, Mezard C, de Massy B, Grelon M (2016) A new light on the meiotic DSB catalytic complex. Semin Cell Dev Biol 54:165–176PubMedGoogle Scholar
  123. Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987PubMedGoogle Scholar
  124. Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080PubMedGoogle Scholar
  125. Santucci-Darmanin S, Neyton S, Lespinasse F, Saunieres A, Gaudray P, Paquis-Flucklinger V (2002) The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum Mol Genet 11:1697–1706PubMedGoogle Scholar
  126. Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791PubMedGoogle Scholar
  127. Serrentino ME, Borde V (2012) The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots? Exp Cell Res 318:1347–1352PubMedGoogle Scholar
  128. Serrentino ME, Chaplais E, Sommermeyer V, Borde V (2013) Differential association of the conserved SUMO ligase Zip3 with meiotic double-strand break sites reveals regional variations in the outcome of meiotic recombination. PLoS Genet 9:e1003416PubMedPubMedCentralGoogle Scholar
  129. Sha Y, Zheng L, Ji Z, Mei L, Ding L, Lin S, Wang X, Yang X, Li P (2018) A novel TEX11 mutation induces azoospermia: a case report of infertile brothers and literature review. BMC Med Genet 19:63PubMedPubMedCentralGoogle Scholar
  130. Shen Y, Tang D, Wang K, Wang M, Huang J, Luo W, Luo Q, Hong L, Li M, Cheng Z (2012) ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. J Cell Sci 125:2581–2591PubMedGoogle Scholar
  131. Shinohara M, Oh SD, Hunter N, Shinohara A (2008) Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat Genet 40:299–309PubMedGoogle Scholar
  132. Shinohara M, Hayashihara K, Grubb JT, Bishop DK, Shinohara A (2015) DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. J Cell Sci 128:1494–1506PubMedPubMedCentralGoogle Scholar
  133. Shodhan A, Kataoka K, Mochizuki K, Novatchkova M, Loidl J (2017) A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol Biol Cell 28:825–833PubMedPubMedCentralGoogle Scholar
  134. Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4-hMSH5 recognizes Holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15:437–451PubMedGoogle Scholar
  135. Sourirajan A, Lichten M (2008) Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev 22:2627–2632PubMedPubMedCentralGoogle Scholar
  136. Stack SM, Soulliere DL (1984) The relation between synapsis and chiasma formation in Rhoeo spathacea. Chromosoma 90:72–83Google Scholar
  137. Storlazzi A, Xu L, Schwacha A, Kleckner N (1996) Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc Natl Acad Sci U S A 93:9043–9048PubMedPubMedCentralGoogle Scholar
  138. Storlazzi A, Gargano S, Ruprich-Robert G, Falque M, David M, Kleckner N, Zickler D (2010) Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141:94–106PubMedPubMedCentralGoogle Scholar
  139. Strong ER, Schimenti JC (2010) Evidence implicating CCNB1IP1, a RING domain-containing protein required for meiotic crossing over in mice, as an E3 SUMO ligase. Genes 1:440–451PubMedPubMedCentralGoogle Scholar
  140. Subramanian VV, Zhu X, Markowitz TE, Vale-Silva LA, San-Segundo PA, Hollingsworth NM, Keeney S, Hochwagen A (2019) Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat Commun 10:970PubMedPubMedCentralGoogle Scholar
  141. Sym M, Roeder GS (1994) Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79:283–292PubMedGoogle Scholar
  142. Sym M, Engebrecht JA, Roeder GS (1993) ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–378Google Scholar
  143. Tang S, Wu Michelle Ka Y, Zhang R, Hunter N (2015) Pervasive and essential roles of the Top3-Rmi1 Decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Mol Cell 57:607–621PubMedPubMedCentralGoogle Scholar
  144. Tessé S, Storlazzi A, Kleckner N, Gargano S, Zickler D (2003) Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Natl Acad Sci U S A 100:12865–12870PubMedPubMedCentralGoogle Scholar
  145. Tessé S, Bourbon HM, Debuchy R, Budin K, Dubois E, Liangran Z, Antoine R, Piolot T, Kleckner N, Zickler D, Espagne E (2017) Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction. Genes Dev 31:1880–1893PubMedPubMedCentralGoogle Scholar
  146. Thacker D, Mohibullah N, Zhu X, Keeney S (2014) Homologue engagement controls meiotic DNA break number and distribution. Nature 510:241–246PubMedPubMedCentralGoogle Scholar
  147. Toby GG, Gherraby W, Coleman TR, Golemis EA (2003) A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels. Mol Cell Biol 23:2109–2122PubMedPubMedCentralGoogle Scholar
  148. Tsubouchi T, Zhao H, Roeder GS (2006) The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev Cell 10:809–819PubMedGoogle Scholar
  149. Tung K-S, Roeder GS (1998) Meiotic chromosome morphology and behavior in zip1 mutants of Saccharomyces cerevisiae. Genetics 149:817–832PubMedPubMedCentralGoogle Scholar
  150. Vakirlis N, Sarilar V, Drillon G, Fleiss A, Agier N, Meyniel JP, Blanpain L, Carbone A, Devillers H, Dubois K, Gillet-Markowska A, Graziani S, Huu-Vang N, Poirel M, Reisser C, Schott J, Schacherer J, Lafontaine I, Llorente B, Neuvéglise C, Fischer G (2016) Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. Genome Res 26:918–932PubMedPubMedCentralGoogle Scholar
  151. Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schlögelhofer P, Mercier R (2007) The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet 3:1894–1906PubMedGoogle Scholar
  152. Voelkel-Meiman K, Johnston C, Thappeta Y, Subramanian VV, Hochwagen A, MacQueen AJ (2015) Separable crossover-promoting and crossover-constraining aspects of Zip1 activity during budding yeast meiosis. PLoS Genet 11:e1005335PubMedPubMedCentralGoogle Scholar
  153. Voelkel-Meiman K, Cheng S-Y, Morehouse SJ, MacQueen AJ (2016) Synaptonemal complex proteins of budding yeast define reciprocal roles in MutSγ-mediated crossover formation. Genetics 203:1091–1103PubMedPubMedCentralGoogle Scholar
  154. Wang K, Tang D, Wang M, Lu J, Yu H, Liu J, Qian B, Gong Z, Wang X, Chen J, Gu M, Cheng Z (2009) MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 122:2055–2063PubMedGoogle Scholar
  155. Wang M, Wang K, Tang D, Wei C, Li M, Shen Y, Chi Z, Gu M, Cheng Z (2010) The central element protein ZEP1 of the Synaptonemal complex regulates the number of crossovers during meiosis in Rice. Plant Cell 22:417–430PubMedPubMedCentralGoogle Scholar
  156. Wang K, Wang M, Tang D, Shen Y, Miao C, Hu Q, Lu T, Cheng Z (2012) The role of Rice HEI10 in the formation of meiotic crossovers. PLoS Genet 8:e1002809PubMedPubMedCentralGoogle Scholar
  157. Wang J, Zhang W, Jiang H, Wu BL, Primary Ovarian Insufficiency C (2014) Mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med 370:972–974PubMedGoogle Scholar
  158. Ward JO, Reinholdt LG, Motley WW, Niswander LM, Deacon DC, Griffin LB, Langlais KK, Backus VL, Schimenti KJ, O'Brien MJ, Eppig JJ, Schimenti JC (2007) Mutation in mouse hei10, an e3 ubiquitin ligase, disrupts meiotic crossing over. PLoS Genet 3:e139PubMedPubMedCentralGoogle Scholar
  159. Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H (2006) The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol Biol Cell 17:1331–1343PubMedPubMedCentralGoogle Scholar
  160. Woglar A, Villeneuve AM (2018) Dynamic architecture of DNA repair complexes and the Synaptonemal complex at sites of meiotic recombination. Cell 173:1678–1691 e1616PubMedPubMedCentralGoogle Scholar
  161. Woltering D, Baumgartner B, Bagchi S, Larkin B, Loidl J, de los Santos T, Hollingsworth NM (2000) Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p. Mol Cell Biol 20:6646–6658PubMedPubMedCentralGoogle Scholar
  162. Yang F, Gell K, van der Heijden GW, Eckardt S, Leu NA, Page DC, Benavente R, Her C, Hoog C, McLaughlin KJ, Wang PJ (2008) Meiotic failure in male mice lacking an X-linked factor. Genes Dev 22:682–691PubMedPubMedCentralGoogle Scholar
  163. Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, Brown LG, Rozen S, Page DC, Wang PJ (2015) TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med 7:1198–1210PubMedPubMedCentralGoogle Scholar
  164. Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, Westernströer B, Sanfilippo J, Kurpisz M, Rajkovic A, Yatsenko SA, Kliesch S, Schlatt S, Tüttelmann F (2015) X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med 372:2097–2107PubMedPubMedCentralGoogle Scholar
  165. Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM (2012) COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 149:75–87PubMedPubMedCentralGoogle Scholar
  166. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718PubMedGoogle Scholar
  167. Zakharyevich K, Ma Y, Tang S, Hwang PY, Boiteux S, Hunter N (2010) Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol Cell 40:1001–1015PubMedPubMedCentralGoogle Scholar
  168. Zakharyevich K, Tang S, Ma Y, Hunter N (2012) Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell 149:334–347PubMedPubMedCentralGoogle Scholar
  169. Zalevsky J, MacQueen AJ, Duffy JB, Kemphues KJ, Villeneuve AM (1999) Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics 153:1271–1283PubMedPubMedCentralGoogle Scholar
  170. Zhang L, Kim KP, Kleckner NE, Storlazzi A (2011) Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc Natl Acad Sci U S A 108:20036–20041PubMedPubMedCentralGoogle Scholar
  171. Zhang L, Espagne E, de Muyt A, Zickler D, Kleckner NE (2014a) Interference-mediated synaptonemal complex formation with embedded crossover designation. Proc Natl Acad Sci U S A 111:E5059–E5068PubMedPubMedCentralGoogle Scholar
  172. Zhang L, Tang D, Luo Q, Chen X, Wang H, Li Y, Cheng Z (2014b) Crossover formation during rice meiosis relies on interaction of OsMSH4 and OsMSH5. Genetics 198:1447–1456PubMedPubMedCentralGoogle Scholar
  173. Zhang L, Wang S, Yin S, Hong S, Kim KP, Kleckner N (2014c) Topoisomerase II mediates meiotic crossover interference. Nature 511:551–556PubMedPubMedCentralGoogle Scholar
  174. Zhang W, Song X, Ni F, Cheng J, Wu BL, Jiang H (2017) Association analysis between HFM1 variations and idiopathic azoospermia or severe oligozoospermia in Chinese men. Sci China Life Sci 60:315–318PubMedGoogle Scholar
  175. Zhang L, Köhler S, Rillo-Bohn R, Dernburg AF (2018a) A compartmentalized signaling network mediates crossover control in meiosis. eLife 7Google Scholar
  176. Zhang Q, Shao J, Fan H-Y, Yu C (2018b) Evolutionarily-conserved MZIP2 is essential for crossover formation in mammalian meiosis. Commun Biol 1:147.
  177. Zhang Q, Ji SY, Busayavalasa K, Yu C (2019) SPO16 binds SHOC1 to promote homologous recombination and crossing-over in meiotic prophase I. Sci Adv 5:eaau9780PubMedPubMedCentralGoogle Scholar
  178. Zickler D (2006) From early homologue recognition to synaptonemal complex formation. Chromosoma 115:158–174PubMedGoogle Scholar
  179. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754PubMedGoogle Scholar
  180. Zickler D, Kleckner N (2015) Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 7:a016626PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut CuriePSL Research University, CNRS, UMR3244ParisFrance
  2. 2.Paris Sorbonne UniversitéParisFrance

Personalised recommendations