Advertisement

Chromosoma

, Volume 128, Issue 3, pp 369–383 | Cite as

SIRT7 promotes chromosome synapsis during prophase I of female meiosis

  • Berta N. Vazquez
  • Cecilia S. Blengini
  • Yurdiana Hernandez
  • Lourdes Serrano
  • Karen SchindlerEmail author
Original Article

Abstract

Sirtuins are NAD+-dependent protein deacylases and ADP-ribosyltransferases that are involved in a wide range of cellular processes including genome homeostasis and metabolism. Sirtuins are expressed in human and mouse oocytes yet their role during female gamete development are not fully understood. Here, we investigated the role of a mammalian sirtuin member, SIRT7, in oocytes using a mouse knockout (KO) model. Sirt7 KO females have compromised fecundity characterized by a rapid fertility decline with age, suggesting the existence of a diminished oocyte pool. Accordingly, Sirt7 KO females produced fewer oocytes and ovulated fewer eggs. Because of the documented role of SIRT7 in DNA repair, we investigated whether SIRT7 regulates prophase I when meiotic recombination occurs. Sirt7 KO pachynema-like staged oocytes had approximately twofold increased γH2AX signals associated with regions with unsynapsed chromosomes. Consistent with the presence of asynaptic chromosome regions, Sirt7 KO oocytes had fewer MLH1 foci (~one less), a mark of crossover-mediated repair, than WT oocytes. Moreover, this reduced level of crossing over is consistent with an observed twofold increased incidence of aneuploidy in Metaphase II eggs. In addition, we found that acetylated lysine 18 of histone H3 (H3K18ac), an established SIRT7 substrate, was increased at asynaptic chromosome regions suggesting a functional relationship between this epigenetic mark and chromosome synapsis. Taken together, our findings demonstrate a pivotal role for SIRT7 in oocyte meiosis by promoting chromosome synapsis and have unveiled the importance of SIRT7 as novel regulator of the reproductive lifespan.

Keywords

Meiosis Synapsis Sirtuin SIRT7 Oocyte Histone acetylation 

Notes

Acknowledgments

The authors thank Jay Tischfield for the project support, Karen Berkowitz for the technical advice and helpful discussions, Kim McKim and Alejandro Vaquero for critical reading of the manuscript, and Marianne Polunas for processing ovarian tissues.

Funding information

This study was supported by a grant from the Human Genetics Institute of New Jersey and an NIH grant to KS (R01-GM112801).

References

  1. Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151:1569–1579PubMedPubMedCentralGoogle Scholar
  2. Baier B, Hunt P, Broman KW, Hassold T (2014) Variation in genome-wide levels of meiotic recombination is established at the onset of prophase in mammalian males. PLoS Genet 10:e1004125.  https://doi.org/10.1371/journal.pgen.1004125 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118.  https://doi.org/10.1038/nature11043 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blengini CS, Schindler K (2018) Immunofluorescence technique to detect subcellular structures critical to oocyte maturation methods. Mol Biol 1818:67–76.  https://doi.org/10.1007/978-1-4939-8603-3_8 CrossRefGoogle Scholar
  5. Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC (2014) Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343:533–536.  https://doi.org/10.1126/science.1247671 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bosch-Presegue L, Vaquero A (2014) Sirtuins in stress response: guardians of the genome. Oncogene 33:3764–3775.  https://doi.org/10.1038/onc.2013.344 CrossRefPubMedGoogle Scholar
  7. Bosch-Presegue L, Vaquero A (2015) Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 282:1745–1767.  https://doi.org/10.1111/febs.13053 CrossRefPubMedGoogle Scholar
  8. Bristol-Gould SK, Kreeger PK, Selkirk CG, Kilen SM, Cook RW, Kipp JL, Shea LD, Mayo KE, Woodruff TK (2006) Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool. Dev Biol 298:132–148.  https://doi.org/10.1016/j.ydbio.2006.06.025 CrossRefPubMedGoogle Scholar
  9. Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10:207–216.  https://doi.org/10.1038/nrg2505 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chambon JP, Hached K, Wassmann K (2013) Chromosome spreads with centromere staining in mouse oocytes. Methods Mol Biol 957:203–212.  https://doi.org/10.1007/978-1-62703-191-2_14 CrossRefPubMedGoogle Scholar
  11. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100:10794–10799.  https://doi.org/10.1073/pnas.1934713100 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clarke HJ (2018) Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdiscip Rev Dev Biol 7:e294.  https://doi.org/10.1002/wdev.294 CrossRefGoogle Scholar
  13. Cloutier JM, Mahadevaiah SK, ElInati E, Nussenzweig A, Toth A, Turner JM (2015) Histone H2AFX links meiotic chromosome asynapsis to prophase I oocyte loss in mammals. PLoS Genet 11:e1005462.  https://doi.org/10.1371/journal.pgen.1005462 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Crichton JH, Playfoot CJ, Adams IR (2014) The role of chromatin modifications in progression through mouse meiotic prophase. J Genet Genomics 41:97–106.  https://doi.org/10.1016/j.jgg.2014.01.003 CrossRefPubMedGoogle Scholar
  15. Gao M, Li X, He Y, Han L, Qiu D, Ling L, Liu H, Liu J, Gu L (2018) SIRT7 functions in redox homeostasis and cytoskeletal organization during oocyte maturation. FASEB J 32:6228–6238.  https://doi.org/10.1096/fj.201800078RR CrossRefGoogle Scholar
  16. Gray S, Cohen PE (2016) Control of meiotic crossovers: from double-strand break formation to designation. Annu Rev Genet 50:175–210.  https://doi.org/10.1146/annurev-genet-120215-035111 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Grive KJ, Freiman RN (2015) The developmental origins of the mammalian ovarian reserve. Development 142:2554–2563.  https://doi.org/10.1242/dev.125211 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Han L, Ge J, Zhang L, Ma R, Hou X, Li B, Moley K, Wang Q (2015) Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte. Sci Rep 5:15366.  https://doi.org/10.1038/srep15366 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F (2007) Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133:85–94.  https://doi.org/10.1530/REP-06-0025 CrossRefPubMedGoogle Scholar
  20. Kimler BF, Briley SM, Johnson BW, Armstrong AG, Jasti S, Duncan FE (2018) Radiation-induced ovarian follicle loss occurs without overt stromal changes. Reproduction 155:553–562.  https://doi.org/10.1530/REP-18-0089 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L, Liang J, Cheng Z, Shi L, Shang Y, Yu W (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235.  https://doi.org/10.1038/ncomms12235 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mahadevaiah SK, Turner JMA, Baudat F, Rogakou EP, de Boer P, Blanco-Rodríguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276.  https://doi.org/10.1038/85830 CrossRefPubMedGoogle Scholar
  23. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329.  https://doi.org/10.1016/j.cell.2005.11.044 CrossRefPubMedGoogle Scholar
  24. Nguyen AL et al (2018) Genetic interactions between the Aurora Kinases Reveal New Requirements for AURKB and AURKC during oocyte meiosis. Curr Biol 28:3458–3468 e3455.  https://doi.org/10.1016/j.cub.2018.08.052 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pacheco S, Maldonado-Linares A, Marcet-Ortega M, Rojas C, Martínez-Marchal A, Fuentes-Lazaro J, Lange J, Jasin M, Keeney S, Fernández-Capetillo O, Garcia-Caldés M, Roig I (2018) ATR is required to complete meiotic recombination in mice. Nat Commun 9:2622.  https://doi.org/10.1038/s41467-018-04851-z CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286:14575–14587.  https://doi.org/10.1074/jbc.M111.218990 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Prakash K, Fournier D, Redl S, Best G, Borsos M, Tiwari VK, Tachibana-Konwalski K, Ketting RF, Parekh SH, Cremer C, Birk UJ (2015) Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proc Natl Acad Sci U S A 112:14635–14640.  https://doi.org/10.1073/pnas.1516928112 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rinaldi VD, Bolcun-Filas E, Kogo H, Kurahashi H, Schimenti JC (2017) The DNA damage checkpoint eliminates mouse oocytes with chromosome synapsis failure. Mol Cell 67:1026–1036 e1022.  https://doi.org/10.1016/j.molcel.2017.07.027 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet 16:395–403CrossRefGoogle Scholar
  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675PubMedPubMedCentralGoogle Scholar
  31. Serrano L, Martinez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, Fondevila D, Munoz P, Kruger M, Tischfield JA, Vaquero A (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27:639–653.  https://doi.org/10.1101/gad.211342.112 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Stein P, Schindler K (2011) Mouse oocyte microinjection, maturation and ploidy assessment. J Vis Exp.  https://doi.org/10.3791/2851
  33. Stringer JM, Winship A, Liew SH, Hutt K (2018) The capacity of oocytes for DNA repair. Cell Mol Life Sci 75:2777–2792.  https://doi.org/10.1007/s00018-018-2833-9 CrossRefPubMedGoogle Scholar
  34. Tasselli L, Xi Y, Zheng W, Tennen RI, Odrowaz Z, Simeoni F, Li W, Chua KF (2016) SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nat Struct Mol Biol 23:434–440.  https://doi.org/10.1038/nsmb.3202 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47.  https://doi.org/10.1038/ng1484 CrossRefGoogle Scholar
  36. van de Ven RAH, Santos D, Haigis MC (2017) Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med 23:320–331.  https://doi.org/10.1016/j.molmed.2017.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vaquero A (2009) The conserved role of sirtuins in chromatin regulation. Int J Dev Biol 53:303–322.  https://doi.org/10.1387/ijdb.082675av CrossRefPubMedGoogle Scholar
  38. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256–1261.  https://doi.org/10.1101/gad.1412706 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L (2016) SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J 35:1488–1503.  https://doi.org/10.15252/embj.201593499 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vazquez BN, Thackray JK, Serrano L (2017) Sirtuins and DNA damage repair: SIRT7 comes to play. Nucleus 8:107–115.  https://doi.org/10.1080/19491034.2016.1264552 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang L, Xu Z, Khawar MB, Liu C, Li W (2017) The histone codes for meiosis. Reproduction 154:R65–R79.  https://doi.org/10.1530/REP-17-0153 CrossRefPubMedGoogle Scholar
  42. Wang WW et al (2019) A click chemistry approach reveals the chromatin-dependent histone H3K36 deacylase nature of SIRT7. J Am Chem Soc.  https://doi.org/10.1021/jacs.8b12083 CrossRefGoogle Scholar
  43. Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, McKay MJ, Toth A (2009) Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 5:e1000702.  https://doi.org/10.1371/journal.pgen.1000702 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhang L, Hou X, Ma R, Moley K, Schedl T, Wang Q (2014) Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J 28:1435–1445.  https://doi.org/10.1096/fj.13-244111 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeneticsRutgers UniversityPiscatawayUSA

Personalised recommendations