Advertisement

Chromosoma

, Volume 127, Issue 2, pp 247–259 | Cite as

Spatial organization of chromosome territories in the interphase nucleus of trisomy 21 cells

  • Stephan Kemeny
  • Christophe Tatout
  • Gaelle Salaun
  • Céline Pebrel-Richard
  • Carole Goumy
  • Natasha Ollier
  • Eugenie Maurin
  • Bruno Pereira
  • Philippe Vago
  • Laetitia GouasEmail author
Original Article

Abstract

In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.

Keywords

Chromosome territory Nuclear architecture Radial arrangement Trisomy 21 3D-FISH 

Notes

Acknowledgements

The authors thank C. Vachias and P. Pouchin of the Imagerie Confocale de Clermont-Ferrand platform (ICCF) for their technical help in confocal analysis. We also thank A.T.T (Auvergne Traduction Technique) for proofreading the manuscript. This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All biological samples came from a collection declared with the French Ministry of Research and Higher Education (#CODECOH: DC2008-558). Analysis of human samples was performed in accordance with French Bioethics Law (#2011-814). This study is compliant with the principles of the Declaration of Helsinki. This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Altug-Teber O, Bonin M, Walter M, Mau-Holzmann UA, Dufke A, Stappert H, Tekesin I, Heilbronner H, Nieselt K, Riess O (2007) Specific transcriptional changes in human fetuses with autosomal trisomies. Cytogenet Genome Res 119(3-4):171–184.  https://doi.org/10.1159/000112058 CrossRefPubMedGoogle Scholar
  2. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3(5):e157.  https://doi.org/10.1371/journal.pbio.0030157 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10(3):211–219.  https://doi.org/10.1093/hmg/10.3.211 CrossRefPubMedGoogle Scholar
  4. Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10(3):149–152.  https://doi.org/10.1016/S0960-9822(00)00312-2 CrossRefPubMedGoogle Scholar
  5. Bytyutskyy D, Kholodnyy V, Flajšhans M (2014) 3-D structure, volume, and DNA content of erythrocyte nuclei of polyploid fish: 3-D structure, volume, and DNA content of erythrocyte nuclei of polyploid fish. Cell Biol Int 38(6):708–715.  https://doi.org/10.1002/cbin.10247 CrossRefPubMedGoogle Scholar
  6. Chou CY, Liu LY, Chen CY, Tsai CH, Hwa HL, Chang LY, Lin YS, Hsieh FJ (2008) Gene expression variation increase in trisomy 21 tissues. Mamm Genome 19(6):398–405.  https://doi.org/10.1007/s00335-008-9121-1 CrossRefPubMedGoogle Scholar
  7. Chubb JR, Bickmore WA (2003) Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112(4):403–406.  https://doi.org/10.1016/S0092-8674(03)00078-3 CrossRefPubMedGoogle Scholar
  8. Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB (2006) The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci 103(20):7688–7693.  https://doi.org/10.1073/pnas.0601069103 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Conti A, Fabbrini F, D’Agostino P et al (2007) Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genomics 8(1):268–268.  https://doi.org/10.1186/1471-2164-8-268 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301.  https://doi.org/10.1038/35066075 CrossRefPubMedGoogle Scholar
  11. Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58(0):777–792.  https://doi.org/10.1101/SQB.1993.058.01.085 CrossRefPubMedGoogle Scholar
  12. Cremer M, von Hase J, Volm T et al (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res 9(7):541–567.  https://doi.org/10.1023/A:1012495201697 CrossRefGoogle Scholar
  13. Cremer M, Küpper K, Wagler B, Wizelman L, Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density–related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162(5):809–820.  https://doi.org/10.1083/jcb.200304096 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cremer M, Grasser F, Lanctôt C, et al (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes Nucl Vol 1 Nucl Subnucl Compon 205–239Google Scholar
  15. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145(6):1119–1131.  https://doi.org/10.1083/jcb.145.6.1119 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356(2):297–310.  https://doi.org/10.1042/bj3560297 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Edens LJ, White KH, Jevtic P, Li X, Levy DL (2013) Nuclear size regulation: from single cells to development and disease. Trends Cell Biol 23(4):151–159.  https://doi.org/10.1016/j.tcb.2012.11.004 CrossRefPubMedGoogle Scholar
  18. Eils R, Dietzel S, Bertin E et al (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135(6):1427–1440.  https://doi.org/10.1083/jcb.135.6.1427 CrossRefPubMedGoogle Scholar
  19. Federico C, Scavo C, Cantarella CD, Motta S, Saccone S, Bernardi G (2006) Gene-rich and gene-poor chromosomal regions have different locations in the interphase nuclei of cold-blooded vertebrates. Chromosoma 115(2):123–128.  https://doi.org/10.1007/s00412-005-0039-z CrossRefPubMedGoogle Scholar
  20. FitzPatrick DR, Ramsay J, McGill NI, Shade M, Carothers AD, Hastie ND (2002) Transcriptome analysis of human autosomal trisomy. Hum Mol Genet 11(26):3249–3256.  https://doi.org/10.1093/hmg/11.26.3249 CrossRefPubMedGoogle Scholar
  21. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114(4):212–229.  https://doi.org/10.1007/s00412-005-0016-6 CrossRefPubMedGoogle Scholar
  22. Fournier A, McLeer-Florin A, Lefebvre C, Duley S, Barki L, Ribeyron J, Alboukadel K, Hamaidia S, Granjon A, Gressin R, Lajmanovich A, Bonnefoix T, Chauvelier S, Debernardi A, Rousseaux S, de Fraipont F, Figeac M, Kerckaert JP, de Vos J, Usson Y, Delaval K, Grichine A, Vourc'h C, Khochbin S, Feil R, Leroux D, Callanan MB (2010) 1q12 chromosome translocations form aberrant heterochromatic foci associated with changes in nuclear architecture and gene expression in B cell lymphoma. EMBO Mol Med 2(5):159–171.  https://doi.org/10.1002/emmm.201000067 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gardiner K, Herault Y, Lott IT, Antonarakis SE, Reeves RH, Dierssen M (2010) Down syndrome: from understanding the neurobiology to therapy. J Neurosci 30(45):14943–14945.  https://doi.org/10.1523/JNEUROSCI.3728-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gilbert N, Gilchrist S, Bickmore WA (2004) Chromatin organization in the mammalian nucleus. In: International review of cytology. Academic Press, pp 283–336Google Scholar
  25. Göndör A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature 461(7261):212–217.  https://doi.org/10.1038/nature08453 CrossRefPubMedGoogle Scholar
  26. Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosom Res 9(7):569–584.  https://doi.org/10.1023/A:1012447318535 CrossRefGoogle Scholar
  27. Harewood L, Schutz F, Boyle S, Perry P, Delorenzi M, Bickmore WA, Reymond A (2010) The effect of translocation-induced nuclear reorganization on gene expression. Genome Res 20(5):554–564.  https://doi.org/10.1101/gr.103622.109 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heride C, Ricoul M, Kiêu K, von Hase J, Guillemot V, Cremer C, Dubrana K, Sabatier L (2010) Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 123(23):4063–4075.  https://doi.org/10.1242/jcs.066498 CrossRefPubMedGoogle Scholar
  29. Hervé B, Coussement A, Gilbert T, Dumont F, Jacques S, Cuisset L, Chicard M, Hizem S, Bourdoncle P, Letourneur F, Dupont C, Vialard F, Choiset A, Dupont JM (2016) Aneuploidy: the impact of chromosome imbalance on nuclear organization and overall genome expression: impact of chromosome imbalance. Clin Genet 90(1):35–48.  https://doi.org/10.1111/cge.12731 CrossRefPubMedGoogle Scholar
  30. Iborra FJ, Pombo A, Jackson DA, Cook PR (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci 109:1427–1436PubMedGoogle Scholar
  31. Jackson JF, North ER III, Thomas JG (1976) Clinical diagnosis of Down’s syndrome. Clin Genet 9(5):483–487.  https://doi.org/10.1111/j.1399-0004.1976.tb01601.x CrossRefPubMedGoogle Scholar
  32. Jevtić P, Levy DL (2014) Mechanisms of nuclear size regulation in model systems and cancer. In: Schirmer CE, de las Heras IJ (eds) Cancer biology and the nuclear envelope: recent advances may elucidate past paradoxes. Springer, New York, pp 537–569.  https://doi.org/10.1007/978-1-4899-8032-8_25 CrossRefGoogle Scholar
  33. Jevtić P, Edens LJ, Vuković LD, Levy DL (2014) Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol 28:16–27.  https://doi.org/10.1016/j.ceb.2014.01.003 CrossRefPubMedGoogle Scholar
  34. Kahlem P (2006) Gene-dosage effect on chromosome 21 transcriptome in trisomy 21: implication in down syndrome cognitive disorders. Behav Genet 36(3):416–428.  https://doi.org/10.1007/s10519-006-9053-z CrossRefPubMedGoogle Scholar
  35. Khalil A, Grant JL, Caddle LB, Atzema E, Mills KD, Arneodo A (2007) Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosom Res 15(7):899–916.  https://doi.org/10.1007/s10577-007-1172-8 CrossRefGoogle Scholar
  36. Kozubek S, Lukásová E, Jirsová P, Koutná I, Kozubek M, Ganová A, Bártová E, Falk M, Paseková R (2002) 3D structure of the human genome: order in randomness. Chromosoma 111(5):321–331.  https://doi.org/10.1007/s00412-002-0210-8 CrossRefPubMedGoogle Scholar
  37. Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116(3):285–306.  https://doi.org/10.1007/s00412-007-0098-4 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Letourneau A, Santoni FA, Bonilla X, Sailani MR, Gonzalez D, Kind J, Chevalier C, Thurman R, Sandstrom RS, Hibaoui Y, Garieri M, Popadin K, Falconnet E, Gagnebin M, Gehrig C, Vannier A, Guipponi M, Farinelli L, Robyr D, Migliavacca E, Borel C, Deutsch S, Feki A, Stamatoyannopoulos JA, Herault Y, van Steensel B, Guigo R, Antonarakis SE (2014) Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature 508(7496):345–350.  https://doi.org/10.1038/nature13200 CrossRefPubMedGoogle Scholar
  39. Levy DL, Heald R (2012) Mechanisms of intracellular scaling. Annu Rev Cell Dev Biol 28(1):113–135.  https://doi.org/10.1146/annurev-cellbio-092910-154158 CrossRefPubMedGoogle Scholar
  40. Li C-M, Guo M, Salas M, Schupf N, Silverman W, Zigman WB, Husain S, Warburton D, Thaker H, Tycko B (2006) Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med Genet 7(1):24.  https://doi.org/10.1186/1471-2350-7-24 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80(3):224–34Google Scholar
  42. Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S (2007) Gene expression profiling in the adult Down syndrome brain. Genomics 90(6):647–660.  https://doi.org/10.1016/j.ygeno.2007.08.005 CrossRefPubMedGoogle Scholar
  43. Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6(1):44–44.  https://doi.org/10.1186/1471-2121-6-44 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mora L, Sánchez I, Garcia M, Ponsà M (2006) Chromosome territory positioning of conserved homologous chromosomes in different primate species. Chromosoma 115(5):367–375.  https://doi.org/10.1007/s00412-006-0064-6 CrossRefPubMedGoogle Scholar
  45. Murmann AE, Gao J, Encinosa M, Gautier M, Peter ME, Eils R, Lichter P, Rowley JD (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311(1):14–26.  https://doi.org/10.1016/j.yexcr.2005.07.020 CrossRefPubMedGoogle Scholar
  46. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065–1071.  https://doi.org/10.1038/ng1423 CrossRefPubMedGoogle Scholar
  47. Parada LA, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12(9):425–432.  https://doi.org/10.1016/S0962-8924(02)02351-6 CrossRefPubMedGoogle Scholar
  48. Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5(7):R44.  https://doi.org/10.1186/gb-2004-5-7-r44 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Paz N, Zabala A, Royo F, García-Orad Á, Zugaza JL, Parada LA (2013) Combined fluorescent-chromogenic in situ hybridization for identification and laser microdissection of interphase chromosomes. PLoS One 8(4):e60238.  https://doi.org/10.1371/journal.pone.0060238 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Paz N, Felipe-Blanco I, Royo F, Zabala A, Guerra-Merino I, García-Orad Á, Zugaza JL, Parada LA (2015) Expression of the DYRK1A gene correlates with its 3D positioning in the interphase nucleus of Down syndrome cells. Chromosom Res 23(2):285–298.  https://doi.org/10.1007/s10577-015-9467-7 CrossRefGoogle Scholar
  51. Potier M-C, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, Personnaz L, Rossier J, Dauphinot L (2006) Transcriptional disruptions in down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem 97:104–109.  https://doi.org/10.1111/j.1471-4159.2005.03624.x CrossRefPubMedGoogle Scholar
  52. Poulet A, Arganda-Carreras I, Legland D, Probst AV, Andrey P, Tatout C (2015) NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei. Bioinformatics 31(7):1144–1146.  https://doi.org/10.1093/bioinformatics/btu774 CrossRefPubMedGoogle Scholar
  53. Rinke B, Bischoff A, Meffert M-C et al (1995) Volume ratios of painted chromosome territories 5, 7 and X in female human cell nuclei studied with confocal laser microscopy and the Cavalieri estimator. Bioimaging 3:1–11CrossRefGoogle Scholar
  54. Roizen NJ, Patterson D (2003) Down’s syndrome. Lancet 361(9365):1281–1289.  https://doi.org/10.1016/S0140-6736(03)12987-X CrossRefPubMedGoogle Scholar
  55. Rozovski U, Jonish-Grossman A, Bar-Shira A, Ochshorn Y, Goldstein M, Yaron Y (2007) Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype. Hum Reprod 22(9):2538–2545.  https://doi.org/10.1093/humrep/dem214 CrossRefPubMedGoogle Scholar
  56. Sengupta K, Upender MB, Barenboim-Stapleton L, Nguyen QT, Wincovitch SM, Garfield SH, Difilippantonio MJ, Ried T (2007) Artificially introduced aneuploid chromosomes assume a conserved position in colon cancer cells. PLoS One 2(2):e199.  https://doi.org/10.1371/journal.pone.0000199 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sommer CA, Pavarino-Bertelli EC, Goloni-Bertollo EM, Henrique-Silva F (2007) Identification of dysregulated genes in lymphocytes from children with Down syndrome. Genome 51(1):19–29.  https://doi.org/10.1139/G07-100 CrossRefGoogle Scholar
  58. Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79(1):184–190.  https://doi.org/10.1016/S0006-3495(00)76282-5 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Szczerbal I, Foster HA, Bridger JM (2009) The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 118(5):647–663.  https://doi.org/10.1007/s00412-009-0225-5 CrossRefPubMedGoogle Scholar
  60. Tanabe H, Müller S, Neusser M et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99(7):4424–4429.  https://doi.org/10.1073/pnas.072618599 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tanabe H, Küpper K, Ishida T et al (2005) Inter- and intra-specific gene-density-correlated radial chromosome territory arrangements are conserved in Old World monkeys. Cytogenet Genome Res 108(1-3):255–261.  https://doi.org/10.1159/000080824 CrossRefPubMedGoogle Scholar
  62. Tashiro S, Lanctôt C (2015) The international nucleome consortium. Nucleus 6(2):89–92.  https://doi.org/10.1080/19491034.2015.1022703 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Taslerová R, Kozubek S, Lukásová E, Jirsová P, Bártová E, Kozubek M (2003) Arrangement of chromosome 11 and 22 territories, EWSR1 and FLI1 genes, and other genetic elements of these chromosomes in human lymphocytes and Ewing sarcoma cells. Hum Genet 112(2):143–155.  https://doi.org/10.1007/s00439-002-0847-7 PubMedGoogle Scholar
  64. Taslerová R, Kozubek S, Bártová E, Gajdušková P, Kodet R, Kozubek M (2006) Localization of genetic elements of intact and derivative chromosome 11 and 22 territories in nuclei of Ewing sarcoma cells. J Struct Biol 155(3):493–504.  https://doi.org/10.1016/j.jsb.2006.05.005 CrossRefPubMedGoogle Scholar
  65. Teller K, Illner D, Thamm S, Casas-Delucchi CS, Versteeg R, Indemans M, Cremer T, Cremer M (2011) A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at ≥ 20 Mb genomic length scales. Nucleus 2(5):465–477.  https://doi.org/10.4161/nucl.2.5.17862 CrossRefPubMedGoogle Scholar
  66. Wang N, Stenkvist BG, Tribukait B (1992) Morphometry of nuclei of the normal and malignant prostate in relation to DNA ploidy. Anal Quant Cytol Histol Int Acad Cytol Am Soc Cytol 14:210–216Google Scholar
  67. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122(10):1477–1486.  https://doi.org/10.1242/jcs.037333 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166(6):815–825.  https://doi.org/10.1083/jcb.200404107 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Stephan Kemeny
    • 1
    • 2
  • Christophe Tatout
    • 3
  • Gaelle Salaun
    • 1
    • 2
  • Céline Pebrel-Richard
    • 1
    • 2
  • Carole Goumy
    • 1
    • 2
  • Natasha Ollier
    • 1
    • 2
  • Eugenie Maurin
    • 1
    • 2
  • Bruno Pereira
    • 4
  • Philippe Vago
    • 1
    • 2
  • Laetitia Gouas
    • 1
    • 2
    Email author
  1. 1.ERTICA EA 4677Université Clermont AuvergneClermont-FerrandFrance
  2. 2.Service de Cytogénétique MédicaleCHU Estaing, Cytogénétique MédicaleClermont-FerrandFrance
  3. 3.Université Clermont Auvergne, UMR CNRS 6293, INSERM U 1103Laboratoire de Génétique Reproduction et DéveloppementClermont-FerrandFrance
  4. 4.CHU Clermont-FerrandDélégation à la Recherche Clinique et à l’InnovationClermont-FerrandFrance

Personalised recommendations