Advertisement

Chromosoma

, Volume 126, Issue 6, pp 697–712 | Cite as

dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres

  • Joselyn Chavez
  • Juan Manuel Murillo-Maldonado
  • Vanessa Bahena
  • Ana Karina Cruz
  • América Castañeda-Sortibrán
  • Rosario Rodriguez-Arnaiz
  • Mario Zurita
  • Viviana Valadez-Graham
Original Article

Abstract

Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.

Keywords

ATRX HP1a Telomeres HTT array Heterochromatin 

Notes

Acknowledgements

We thank Dr. James Mason for providing the GIII strain. We also thank Silvia Meyer for the construction of the plasmids used. We would like to thank Benjamín Hernández for his participation at the beginning of this work. We also thank Claudia Mónica Flores Loyola for her participation in the LOH assay. J.C. was supported by a Masters degree scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACyt, 404495). J.M.M-M was supported by a DGAPA-UNAM postdoctoral fellowship. We also thank Arturo Pimentel, Andrés Saralegui and Dr. Chris Wood from the LMNA for the advice on the use of the microscopes. We thank Dr. Martha Vazquez for her valuable comments on this work. This work was supported by grants from CONACyT 219673 and DGAPA UNAM number IN200315 to MZ and grant 177393 from (CONACyT) and grants IN204915 and IA200613 from (PAPIIT-UNAM) to VV-G.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

412_2017_634_MOESM1_ESM.pdf (8.7 mb)
ESM 1 (PDF 8954 kb)

References

  1. Abel J, Eskeland R, Raffa GD, et al (2009) Drosophila HP1c is regulated by an auto-regulatory feedback loop through its binding partner WocGoogle Scholar
  2. Alekseyenko AA, Gorchakov AA, Zee BM et al (2014) Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev 28:1445–1460. doi: 10.1101/gad.241950.114 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antao JM, Mason JM, Dejardin J, Kingston RE (2012) Protein landscape at Drosophila melanogaster telomere-associated sequence repeats. Mol Cell Biol 32:2170–2182CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bassett AR, Cooper SE, Ragab A, Travers AA (2008) The chromatin remodelling factor dATRX is involved in heterochromatin formationGoogle Scholar
  5. Biessmann H, Mason JM (2003) Telomerase-independent mechanisms of telomere elongation. Cell Mol Life Sci 60:2325–2333CrossRefPubMedGoogle Scholar
  6. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401 LP–401415Google Scholar
  7. Brower-Toland B, Findley SD, Jiang L et al (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 21:2300–2311CrossRefPubMedPubMedCentralGoogle Scholar
  8. Canzio D, Chang EY, Shankar S et al (2011) Chromodomain-mediated oligomerization of HP1 suggests a nucleosome bridging mechanism for heterochromatin assembly. Mol Cell 41:67–81. doi: 10.1016/j.molcel.2010.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Capkova Frydrychova R, Biessmann H, Mason JM (2009) Regulation of telomere length in Drosophila. Cytogenet Genome Res 122(3–4):356–364Google Scholar
  10. Cardoso C, Timsit S, Villard L et al (1998) Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein. Hum Mol Genet 7:679–684CrossRefPubMedGoogle Scholar
  11. Clynes D, Jelinska C, Xella B et al (2015) Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat Commun 6:7538CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Andrade HH, Reguly ML, Lehmann M (2004) ​Wing somatic mutation and recombination test. Methods Mol Biol 247:389–412Google Scholar
  13. De La Fuente R, Baumann C, Viveiros MM (2011) Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction 142:221–234. doi: 10.1530/REP-10-0380 CrossRefGoogle Scholar
  14. Deng Y, Chang S (2007) Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Investig. doi: 10.1038/labinvest.3700673
  15. Eissenberg JC, Elgin SCR (2014) HP1a: a structural chromosomal protein regulating transcription. Trends Genet 30:103–110. doi: 10.1016/j.tig.2014.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Elbarbary RA, Lucas BA, Maquat LE (2016) Retrotransposons as regulators of gene expression. Science 351:aac7247. doi: 10.1126/science.aac7247 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Emelyanov AV, Konev AY, Vershilova E, Fyodorov DV (2010) Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo. J Biol Chem 285:15027–15037CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila telomeric fragments from other chromosomes or were involved in other rearrangement breakpoints. However, terminal deletions have since been recovered in Dro. Mol Cell 2:527–538CrossRefPubMedGoogle Scholar
  19. Gelbart ME, Larschan E, Peng S et al (2009) Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 16:825–832CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler ELW, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320(5879):1077–1081Google Scholar
  21. Goodier JL (2016) Restricting retrotransposons: a review. Mob DNA 7:16. doi: 10.1186/s13100-016-0070-z CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gou D, Rubalcava M, Sauer S, et al (2010) SETDB1 is involved in postembryonic DNA methylation and gene silencing in DrosophilaGoogle Scholar
  23. He Q, Kim H, Huang R et al (2015) The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation. Cell Stem Cell 17:273–286CrossRefPubMedPubMedCentralGoogle Scholar
  24. Iwase S, Xiang B, Ghosh S et al (2011) ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat Struct Mol Biol 18:769–776CrossRefPubMedPubMedCentralGoogle Scholar
  25. James TC, Eissenberg JC, Craig C et al (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50:170–180PubMedGoogle Scholar
  26. Lin X, Tirichine L, Bowler C (2012) Protocol: chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species. Plant Methods 8:48. doi: 10.1186/1746-4811-8-48 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ling D, Salvaterra PM (2011) Robust RT-qPCR data normalization: validation and selection of internal reference genes during post-experimental data analysis. PLoS One 6:e17762. doi: 10.1371/journal.pone.0017762 CrossRefPubMedPubMedCentralGoogle Scholar
  28. López-Falcón B, Meyer-Nava S, Hernández-Rodríguez B et al (2014) Characterization of the Drosophila group ortholog to the amino-terminus of the alpha-thalassemia and mental retardation X-linked (ATRX) vertebrate protein. PLoS One. doi: 10.1371/journal.pone.0113182
  29. López-Panadès E, Gavis ER, Casacuberta E Specific localization of the Drosophila telomere transposon proteins and RNAs, give insight in their behavior. Control Telomere Biol Organ. doi: 10.1371/journal.pone.0128573
  30. Lu X, Wontakal SN, Emelyanov AV et al (2009) Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure. Genes Dev 23:452–465. doi: 10.1101/gad.1749309 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mathieu N, Pirzio L, Freulet-Marrière M-A et al (2004) Telomeres and chromosomal instability. Cell Mol Life Sci. doi: 10.1007/s00018-003-3296-0
  32. Napier CE, Huschtscha LI, Harvey A et al (2015) ATRX represses alternative lengthening of telomeres. Oncotarget 6:16543–16558CrossRefPubMedPubMedCentralGoogle Scholar
  33. Noh K-M, Maze I, Zhao D et al (2014) ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons. Proc Natl Acad Sci U S A:1–8Google Scholar
  34. Noh KM, Allis CD, Li H (2016) Reading between the lines: “aDD”-ing histone and DNA methylation marks toward a new epigenetic “sum.”. ACS Chem Biol 11:554–563CrossRefPubMedGoogle Scholar
  35. Oikemus SR, McGinnis N, Queiroz-Machado J et al (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 18:1850–1861CrossRefPubMedPubMedCentralGoogle Scholar
  36. Papaconstantinou M, Pepper AN, Wu Y et al (2010) Menin links the stress response to genome stability in Drosophila melanogaster. PLoS One 5(11):e14049CrossRefPubMedPubMedCentralGoogle Scholar
  37. Perrini B, Piacentini L, Fanti L et al (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell. doi: 10.1016/j.molcel.2004.06.036
  38. Ramamoorthy M, Smith S (2015) Loss of ATRX suppresses resolution of telomere cohesion to control recombination in ALT cancer cells. Cancer Cell 28:357–369CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ritchie K, Seah C, Moulin J et al (2008) Loss of ATRX leads to chromosome cohesion and congression defects. J Cell Biol 180:315–324CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ryu HW, Lee DH, Florens L et al (2014) Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. J Proteome 102:137–147CrossRefGoogle Scholar
  41. Sadic D, Schmidt K, Groh S et al (2015) Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep 16:836–850. doi: 10.15252/embr.201439937 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  43. Schneiderman JI, Sakai A, Goldstein S, Ahmad K (2009) The XNP remodeler targets dynamic chromatin in Drosophila. Proc Natl Acad Sci U S A 106:14472–14477CrossRefPubMedPubMedCentralGoogle Scholar
  44. Scott MP, Weiner AJ, Hazelrigg TI, Polisky BA, Pirrotta V, Scalenghe F, Kaufman TC (1983) The molecular organization of the Antennapedia locus of drosophila. Cell 35(3):763–776Google Scholar
  45. Silva-Sousa R, López-Panadès E, Piñeyro D, Casacuberta E (2012) The chromosomal proteins JIL-1 and Z4/Putzig regulate the telomeric chromatin in Drosophila melanogaster. PLoS Genet. doi: 10.1371/journal.pgen.1003153
  46. Silva-Sousa R, Varela MD, Casacuberta E (2013) The Putzig partners DREF, TRF2 and KEN are involved in the regulation of the Drosophila telomere retrotransposons, HeT-A and TART. Mob DNA 4:18. doi: 10.1186/1759-8753-4-18 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Singh AK, Lakhotia SC (2016) The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster. Chromosoma 125:373–388CrossRefPubMedGoogle Scholar
  48. Siriaco GM, Cenci G, Haoudi A et al (2002) Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 160:235–245PubMedPubMedCentralGoogle Scholar
  49. Smothers JF, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol 21:2555–2569CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sullivan W, Ashburner M, Hawley RS (2000) Drosophila protocols. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  51. Swenson JM, Colmenares SU, Strom AR et al (2016) The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. elife 5:e16096. doi: 10.7554/eLife.16096 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Valadez-Graham V, Yoshioka Y, Velazquez O et al (2012) XNP/dATRX interacts with DREF in the chromatin to regulate gene expression. Nucleic Acids Res. doi: 10.1093/nar/gkr865
  53. Voon HPJ, Wong LH (2016) New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res 44:1496–1501. doi: 10.1093/nar/gkw012 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Walter MF, Biessmann MR, Benitez C, Török T, Mason JM, Biessmann H (2007) Effects of telomere length in Drosophila melanogaster on life span, fecundity, and fertility. Chromosoma 116(1):41–51Google Scholar
  55. Williams BC, Karr TL, Montgomery JM, Goldberg ML (1992) The Drosophila l(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J Cell Biol 118:759 LP–759773CrossRefGoogle Scholar
  56. Wong LH, McGhie JD, Sim M et al (2010) ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 20:351–360. doi: 10.1101/gr.101477.109 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhang D, Wang D, Sun F (2011) Drosophila melanogaster Heterochromatin protein HP1b plays important roles in transcriptional activation and development. Chromosoma 120:97–108CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Joselyn Chavez
    • 1
  • Juan Manuel Murillo-Maldonado
    • 1
  • Vanessa Bahena
    • 1
  • Ana Karina Cruz
    • 2
  • América Castañeda-Sortibrán
    • 2
  • Rosario Rodriguez-Arnaiz
    • 2
  • Mario Zurita
    • 1
  • Viviana Valadez-Graham
    • 1
  1. 1.Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Laboratorio de Genética. Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations