, Volume 126, Issue 4, pp 457–463 | Cite as

A novel system for correcting large-scale chromosomal aberrations: ring chromosome correction via reprogramming into induced pluripotent stem cell (iPSC)

  • Taehyun Kim
  • Kathleen Plona
  • Anthony Wynshaw-BorisEmail author


Approximately 1 in 500 newborns are born with chromosomal abnormalities that include trisomies, translocations, large deletions, and duplications. There is currently no therapeutic approach for correcting such chromosomal aberrations in vivo or in vitro. When we attempted to produce induced pluripotent stem cell (iPSC) models from patient-derived fibroblasts that contained ring chromosomes, we found that the ring chromosomes were eliminated and replaced by duplicated normal copies of chromosomes through a mechanism of uniparental isodisomy (Bershteyn et al. 2014, Nature 507:99). The discovery of this previously unforeseen system for aberrant chromosome correction during reprogramming enables us for the first time to model and understand this process of cell-autonomous correction of ring chromosomes during human patient somatic cell reprograming to iPSCs. This knowledge could lead to a potential therapeutic strategy to correct common large-scale chromosomal aberrations, termed “chromosome therapy”.


Ring chromosomes Large-scale aberration Induced pluripotent stem cells (iPSCs) Compensatory uniparental disomy (UPD) Genome editing Chromosome therapy 



Induced pluripotent stem cells


Compensatory uniparental disomy


Miller Dieker Syndrome


Engineered zinc finger nucleases


Transcription activator-like effector nucleases


Clustered regularly interspaced short palindromic repeats



We thank Justine Ngo for the helpful discussion and comments on the manuscript.

Compliance with ethical standards


This work was supported by a grant from Ring 14 International.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Amano T, Jeffries E, Amano M et al (2015) Correction of Down syndrome and Edwards syndrome aneuploidies in human cell cultures. DNA Res 22:331–342. doi: 10.1093/dnares/dsv016 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bershteyn M, Hayashi Y, Desachy G et al (2014) Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature 507:99–103. doi: 10.1038/nature12923 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boward B, Wu T, Dalton S (2016) Concise review: control of cell fate through cell cycle and pluripotency networks. Stem Cells 34:1427–1436. doi: 10.1002/stem.2345 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brennand KJ, Marchetto MC, Benvenisty N et al (2015) Creating patient-specific neural cells for the in vitro study of brain disorders. Stem Cell Reports 5:933–945. doi: 10.1016/j.stemcr.2015.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cartwright P, McLean C, Sheppard A et al (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132:885–896. doi: 10.1242/dev.01670 CrossRefPubMedGoogle Scholar
  6. Damelin M, Sun YE, Sodja VB, Bestor TH (2005) Decatenation checkpoint deficiency in stem and progenitor cells. Cancer Cell 8:479–484. doi: 10.1016/j.ccr.2005.11.004 CrossRefPubMedGoogle Scholar
  7. Dobyns WB, Stratton RF, Parke JT et al (1983) Miller-Dieker syndrome: lissencephaly and monosomy 17p. J Pediatr 102:552–558CrossRefPubMedGoogle Scholar
  8. Edel MJ, Menchon C, Menendez S et al (2010) Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1. Genes Dev 24:561–573. doi: 10.1101/gad.1876710 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gardner RJM, Sutherland GR (2003) Chromosome abnormalities and genetic counseling. Oxford University Press, OxfordGoogle Scholar
  10. Gisselsson D (2011) Ring chromosomes: vicious circles at the end and beginning of life. Atlas of Genetics and Cytogenetics in Oncology and Haematology. doi: 10.4267/2042/37826 Google Scholar
  11. Hockemeyer D, Jaenisch R (2010) Gene targeting in human pluripotent cells. Cold Spring Harb Symp Quant Biol 75:201–209. doi: 10.1101/sqb.2010.75.021 CrossRefPubMedGoogle Scholar
  12. Hockemeyer D, Soldner F, Beard C et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857. doi: 10.1038/nbt.1562 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734. doi: 10.1038/nbt.1927 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hotta A, Yamanaka S (2015) From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu Rev Genet 49:47–70. doi: 10.1146/annurev-genet-112414-054926 CrossRefPubMedGoogle Scholar
  15. Hussein SMI, Elbaz J, Nagy AA (2012) Genome damage in induced pluripotent stem cells: assessing the mechanisms and their consequences. BioEssays 35:152–162. doi: 10.1002/bies.201200114 CrossRefPubMedGoogle Scholar
  16. Jiang J, Jing Y, Cost GJ et al (2013) Translating dosage compensation to trisomy 21. Nature 500:296–300. doi: 10.1038/nature12394 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kawamura T, Suzuki J, Wang YV et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144. doi: 10.1038/nature08311 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kim T, Bershteyn M, Wynshaw-Boris A (2014) Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs). Nucleus 5:391–395. doi: 10.4161/nucl.36300 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kosztol nyi GR (1987) Does ring syndrome exist? An analysis of 207 case reports on patients with a ring autosome. Hum Genet 75:174–179. doi: 10.1007/BF00591082 CrossRefGoogle Scholar
  20. Lee B, Davidson BL (2011) Gene therapy grows into young adulthood: special review issue. Hum Mol Genet 20:R1–R1. doi: 10.1093/hmg/ddr188 CrossRefPubMedGoogle Scholar
  21. Li LB, Chang K-H, Wang P-R et al (2012) Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell 11:615–619. doi: 10.1016/j.stem.2012.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lisa Li H, Nakano T, Hotta A (2013) Genetic correction using engineered nucleases for gene therapy applications. Develop Growth Differ 56:63–77. doi: 10.1111/dgd.12107 CrossRefGoogle Scholar
  23. Mayshar Y, Ben-David U, Lavon N et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531. doi: 10.1016/j.stem.2010.07.017 CrossRefPubMedGoogle Scholar
  24. Mikkelsen TS, Hanna J, Zhang X et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55. doi: 10.1038/nature07056 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360. doi: 10.1038/nature15818 CrossRefPubMedGoogle Scholar
  26. Radojcić Badovinac A, Buretić-Tomljanović A, Starcević N et al (2000) Chromosome studies in patients with defective reproductive success. Am J Reprod Immunol 44:279–283CrossRefPubMedGoogle Scholar
  27. Robinson WP, Binkert F, Bernasconi F et al (1995) Molecular studies of chromosomal mosaicism: relative frequency of chromosome gain or loss and possible role of cell selection. Am J Hum Genet 56:444–451PubMedPubMedCentralGoogle Scholar
  28. Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132:549–552. doi: 10.1016/j.cell.2008.02.010 CrossRefPubMedGoogle Scholar
  29. Savić N, Schwank G (2016) Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168:15–21. doi: 10.1016/j.trsl.2015.09.008 CrossRefPubMedGoogle Scholar
  30. Schinzel A (2001) Catalogue of unbalanced chromosome aberrations in man. Walter de Gruyter, BerlinGoogle Scholar
  31. Smith ZD, Sindhu C, Meissner A (2016) Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol 17:139–154. doi: 10.1038/nrm.2016.6 CrossRefPubMedGoogle Scholar
  32. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  33. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17:183–193. doi: 10.1038/nrm.2016.8 CrossRefPubMedGoogle Scholar
  34. Trevino AE, Zhang F (2014) Genome editing using Cas9 Nickases. In: The use of CRISPR/Cas9, ZFNs, and TALENs in generating site-specific genome alterations. Methods of Enzymology, Elsevier, Amsterdam, pp 161–174Google Scholar
  35. Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324. doi: 10.1038/nature05944 CrossRefPubMedGoogle Scholar
  36. Wyandt HE (1988) Ring autosomes: identification, familial transmission, causes of phenotypic effects and in vitro mosaicism. The cytogenetics of mammalian autosomal rearrangements. AR Liss, pp 667–669Google Scholar
  37. Yip M-Y (2015) Autosomal ring chromosomes in human genetic disorders. Transl Pediatr 4:164–174. doi: 10.3978/j.issn.2224-4336.2015.03.04 PubMedPubMedCentralGoogle Scholar
  38. Zhao A, Yang L, Ma K et al (2016) Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells. Cell Cycle 15:644–653. doi: 10.1080/15384101.2016.1146838 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations