Advertisement

Chromosoma

, Volume 125, Issue 4, pp 661–668 | Cite as

Evolutionary plasticity of acipenseriform genomes

  • Vladimir A. Trifonov
  • Svetlana S. Romanenko
  • Violetta R. Beklemisheva
  • Larisa S. Biltueva
  • Alexey I. Makunin
  • Natalia A. Lemskaya
  • Anastasia I. Kulemzina
  • Roscoe Stanyon
  • Alexander S. Graphodatsky
Mini-Review

Abstract

Acipenseriformes is an order of ray-finned fishes, comprising 27 extant species of sturgeons and paddlefishes inhabiting waters of the Northern Hemisphere. The order has a basal position within Actinopteri (ray-finned fish minus polypterids) and is characterized by many specific morphological and genomic features, including high diploid chromosome numbers, various levels of ploidy between species, unclear sex determination, and propensity to interspecific hybridization. Recent advances in molecular genetics, genomics, and comparative cytogenetics produced novel data on different aspects of acipenseriform biology, including improved phylogenetic reconstructions and better understanding of genome structure. Here, we discuss the cytogenetic and genomic traits of acipenseriforms and their connection with polyploidization and tolerance to interspecific hybridization.

Keywords

Polyploidy Whole genome duplication Sturgeon Paddlefish 

Notes

Acknowledgments

The work was supported by RSF grant No. 14-14-00275.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Arefjev VA (1989) Karyotype variability in successive generations after hybridization between the great sturgeon, Huso huso (L.), and sterlet, Acipenser ruthenus L. J Fish Biol 35:819–828CrossRefGoogle Scholar
  2. Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fish 48:25–71. doi: 10.1023/A:1007370213924 CrossRefGoogle Scholar
  3. Birstein VJ, DeSalle R (1998) Molecular phylogeny of Acipenserinae. Mol Phylogenet Evol 9:141–155. doi: 10.1006/mpev.1997.0443 CrossRefPubMedGoogle Scholar
  4. Birstein VJ, Hanner R, DeSalle R (1997) Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fish 48:127–155. doi: 10.1023/A:1007366100353 CrossRefGoogle Scholar
  5. Braasch I, Gehrke AR, Smith JJ et al (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 48:427–437. doi: 10.1038/ng.3526 CrossRefPubMedGoogle Scholar
  6. Burtzev I (1969) Obtaining offspring from intergeneric hybrid between beluga, Huso huso (L.), and the sterlet, Acipenser ruthenus L. In: Genetics selection and hybridization of fishes. Moscow, Nauka, pp 232–242Google Scholar
  7. Chicca M, Suciu R, Ene C et al (2002) Karyotype characterization of the stellate sturgeon, Acipenser stellatus by chromosome banding and fluorescent in situ hybridization. J Appl Ichthyol 18:298–300. doi: 10.1046/j.1439-0426.2002.00378.x CrossRefGoogle Scholar
  8. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846. doi: 10.1038/nrg1711 CrossRefPubMedGoogle Scholar
  9. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3, e314. doi: 10.1371/journal.pbio.0030314 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364. doi: 10.1016/S0044-8486(02)00057-1 CrossRefGoogle Scholar
  11. Drauch Schreier A, Gille D, Mahardja B, May B (2011) Neutral markers confirm the octoploid origin and reveal spontaneous autopolyploidy in white sturgeon, Acipenser transmontanus. J Appl Ichthyol 27:24–33. doi: 10.1111/j.1439-0426.2011.01873.x CrossRefGoogle Scholar
  12. Flynn SR, Matsuoka M, Reith M et al (2006) Gynogenesis and sex determination in shortnose sturgeon, Acipenser brevirostrum Lesuere. Aquaculture 253:721–727. doi: 10.1016/j.aquaculture.2005.09.016 CrossRefGoogle Scholar
  13. Fopp-Bayat D (2010) Meiotic gynogenesis revealed not homogametic female sex determination system in Siberian sturgeon (Acipenser baeri Brandt). Aquaculture 305:174–177. doi: 10.1016/j.aquaculture.2010.04.011 CrossRefGoogle Scholar
  14. Gamble T (2016) Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol Ecol 25:2114–2116. doi: 10.1111/mec.13648 CrossRefPubMedGoogle Scholar
  15. Grunina AS, Rekubratskiĭ AV, Tsvetkova LI et al (2011) Dispermic androgenesis in sturgeons with the help of cryopreserved sperm: production of androgenetic hybrids between Siberian and Russian sturgeons. Ontogenez 42:133–145PubMedGoogle Scholar
  16. Hale MC, McCormick CR, Jackson JR, Dewoody JA (2009) Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery. BMC Genomics 10:203. doi: 10.1186/1471-2164-10-203 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Havelka M, Kaspar V, Hulak M, Flajshans M (2011) Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool Czech Repub 60:93Google Scholar
  18. Havelka M, Hulák M, Rodina M, Flajšhans M (2013) First evidence of autotriploidization in sterlet (Acipenser ruthenus). J Appl Genet 54:201–207. doi: 10.1007/s13353-013-0143-3 CrossRefPubMedGoogle Scholar
  19. Havelka M, Hulák M, Ráb P et al (2014) Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet 15:5. doi: 10.1186/1471-2156-15-5 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Havelka M, Bytyutskyy D, Symonová R et al (2016) The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol GSE. doi: 10.1186/s12711-016-0194-0 PubMedGoogle Scholar
  21. Kim DS, Nam YK, Noh JK et al (2005) Karyotype of North American shortnose sturgeon Acipenser brevirostrum with the highest chromosome number in the Acipenseriformes. Ichthyol Res 52:94–97. doi: 10.1007/s10228-004-0257-z CrossRefGoogle Scholar
  22. Kitano J, Peichel CL (2012) Turnover of sex chromosomes and speciation in fishes. Environ Biol Fish 94:549–558. doi: 10.1007/s10641-011-9853-8 CrossRefGoogle Scholar
  23. Krieger J, Fuerst PA (2002) Evidence for a slowed rate of molecular evolution in the order acipenseriformes. Mol Biol Evol 19:891–897CrossRefPubMedGoogle Scholar
  24. Li XC, Barringer BC, Barbash DA (2009) The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. Heredity 102:24–30. doi: 10.1038/hdy.2008.84 CrossRefPubMedGoogle Scholar
  25. Ludwig A, Belfiore NM, Pitra C et al (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158:1203–1215PubMedPubMedCentralGoogle Scholar
  26. Ludwig A, Lippold S, Debus L, Reinartz R (2009) First evidence of hybridization between endangered sterlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol Invasions 11:753–760CrossRefGoogle Scholar
  27. Lynch M (2002) Gene duplication and evolution. Science 297:945–947. doi: 10.1126/science.1075472 CrossRefPubMedGoogle Scholar
  28. Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x CrossRefGoogle Scholar
  29. Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265. doi: 10.1101/gr.6316407 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ogden R, Gharbi K, Mugue N et al (2013) Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Mol Ecol 22:3112–3123. doi: 10.1111/mec.12234 CrossRefPubMedGoogle Scholar
  31. Ohno S (1970) Evolution by gene duplication. Springer-VerlagGoogle Scholar
  32. Ohno S, Muramoto J, Stenius C et al (1969) Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26:35–40CrossRefPubMedGoogle Scholar
  33. Omoto N, Maebayashi M, Adachi S et al (2005) Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female×Acipenser ruthenus male). Aquaculture 245:39–47. doi: 10.1016/j.aquaculture.2004.12.004 CrossRefGoogle Scholar
  34. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462. doi: 10.1016/j.cell.2007.10.022 CrossRefPubMedGoogle Scholar
  35. Peng Z, Ludwig A, Wang D et al (2007) Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol Phylogenet Evol 42:854–862. doi: 10.1016/j.ympev.2006.09.008 CrossRefPubMedGoogle Scholar
  36. Phillips RB (2013) Evolution of the sex chromosomes in salmonid fishes. Cytogenet Genome Res 141:177–185. doi: 10.1159/000355149 CrossRefPubMedGoogle Scholar
  37. Romanenko SA, Biltueva LS, Serdyukova NA et al (2015) Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol Cytogenet 8:90. doi: 10.1186/s13039-015-0194-8 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Saber HM, Hallajian A (2014) Study of sex determination system in ship sturgeon, Acipenser nudiventris using meiotic gynogenesis. Aquac Int 22:273–279. doi: 10.1007/s10499-013-9676-z CrossRefGoogle Scholar
  39. Shelton WL, Mims SD (2012) Evidence for female heterogametic sex determination in paddlefish Polyodon spathula based on gynogenesis. Aquaculture 356–357:116–118. doi: 10.1016/j.aquaculture.2012.05.029 CrossRefGoogle Scholar
  40. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643. doi: 10.1146/annurev.genet.38.072902.092831 CrossRefPubMedGoogle Scholar
  41. Van Eenennaam A, Eenennaam JV, Medrano JF, Doroshov SI (1999a) Brief communication. Evidence of female heterogametic genetic sex determination in white sturgeon. J Hered 90:231–233. doi: 10.1093/jhered/90.1.231 CrossRefGoogle Scholar
  42. Van Eenennaam AL, Murray JD, Medrano JF (1999b) Synaptonemal complex analysis in spermatocytes of white sturgeon (Acipenser transmontanus Richardson). J Appl Ichthyol 15:284. doi: 10.1111/j.1439-0426.1999.tb00263.x CrossRefGoogle Scholar
  43. Vasil’ev VP (2009) Mechanisms of polyploid evolution in fish: polyploidy in sturgeons. In: Carmona R, Domezain A, García-Gallego M, et al. (eds) Biology, conservation and sustainable development of sturgeons. Springer Netherlands, pp 97–117Google Scholar
  44. Vidotto M, Grapputo A, Boscari E et al (2013) Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genomics 14:407. doi: 10.1186/1471-2164-14-407 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wertheim B, Beukeboom LW, van de Zande L (2013) Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet Genome Res 140:256–269. doi: 10.1159/000351998 CrossRefPubMedGoogle Scholar
  46. Wuertz S, Gaillard S, Barbisan F et al (2006) Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker. Aquaculture 258:685–688. doi: 10.1016/j.aquaculture.2006.03.042 CrossRefGoogle Scholar
  47. Yue H, Li C, Du H et al (2015) Sequencing and de novo assembly of the gonadal transcriptome of the endangered Chinese sturgeon (Acipenser sinensis). PLoS One 10, e0127332. doi: 10.1371/journal.pone.0127332 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhou H, Fujimoto T, Adachi S et al (2011) Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichthyol 27:484–491. doi: 10.1111/j.1439-0426.2010.01648.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vladimir A. Trifonov
    • 1
  • Svetlana S. Romanenko
    • 1
    • 2
  • Violetta R. Beklemisheva
    • 1
  • Larisa S. Biltueva
    • 1
  • Alexey I. Makunin
    • 1
  • Natalia A. Lemskaya
    • 1
  • Anastasia I. Kulemzina
    • 1
  • Roscoe Stanyon
    • 3
  • Alexander S. Graphodatsky
    • 1
    • 2
  1. 1.Institute of Molecular and Cellular Biology SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Department of BiologyUniversity of FlorenceFlorenceItaly

Personalised recommendations