, Volume 126, Issue 3, pp 375–388 | Cite as

Loss of Drosophila nucleostemin 2 (NS2) blocks nucleolar release of the 60S subunit leading to ribosome stress

  • Yubo Wang
  • Patrick DiMario
Original Article


Four nucleostemin-like proteins (nucleostemin (NS) 1–4) were identified previously in Drosophila melanogaster. NS1 and NS2 are nucleolar proteins, while NS3 and NS4 are cytoplasmic proteins. We showed earlier that NS1 (homologous to human GNL3) enriches within the granular components (GCs) of Drosophila nucleoli and is required for efficient maturation or nucleolar release of the 60S subunit. Here, we show that NS2 is homologous to the human nucleostemin-like protein, Ngp1 (GNL2), and that endogenous NS2 is expressed in both progenitor and terminally differentiated cell types. Exogenous GFP-NS2 enriched within nucleolar GCs versus endogenous fibrillarin that marked the dense fibrillar components (DFCs). Like NS1, depletion of NS2 in midgut cells blocked the release of the 60S subunit as detected by the accumulation of GFP-RpL11 within nucleoli, and this likely led to the general loss of 60S subunits as shown by immunoblot analyses of RpL23a and RpL34. At the ultrastructural level, nucleoli in midgut cells depleted of NS2 displayed enlarged GCs not only on the nucleolar periphery but interspersed within the DFCs. Depletion of NS2 caused ribosome stress: larval midgut cells displayed prominent autophagy marked by the appearance of autolysosomes containing mCherry-ATG8a and the appearance of rough endoplasmic reticulum (rER)-derived isolation membranes. Larval imaginal wing disc cells depleted of NS2 induced apoptosis as marked by anti-caspase 3 labeling; loss of these progenitor cells resulted in defective adult wings. We conclude that nucleolar proteins NS1 and NS2 have similar but non-overlapping roles in the final maturation or nucleolar release of 60S ribosomal subunits.


Nucleostemin Ngp1 Drosophila Ribosome stress Autophagy Apoptosis 





Human nucleostemin


Upstream activation sequences


Transmission electron microscopy


Phosphate-buffered saline with Triton X-100


Tris-buffered saline with Tween 20


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


4-6-Diamidino-2-phenylindole dihydrochloride


RNA interference


Fibrillar center


Dense fibrillar component


Granular component


Green fluorescent protein


Rough endoplasmic reticulum



We thank Ying Xiao of LSU’s Socolofsky Microscopy Center for sectioning embedded Drosophila tissues. We thank Joe Gall and Ji-Long Liu for the rabbit anti-Drosophila coilin antiserum and Thomas Neufeld for the UAS-mCherry-ATG8a fly line.

Compliance with ethical standards


This study was funded by the National Science Foundation, award MCB0919709.

Conflict of interest

The authors declare that they have no conflict of interest.

Humans and animals

This article does not contain any studies with human participants performed by any of the authors.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

412_2016_597_Fig9_ESM.gif (104 kb)
Fig. S1

Conventional fluorescence microscopy localized GFP-NS2 relative to endogenous fibrillarin and coilin in wild-type larval midgut cells. a–d GFP-NS2 located mostly to the peripheral regions of the one large nucleolus and to two unknown extra-nucleolar bodies (white arrowheads). Mab72B9 labeled fibrillarin. DAPI stained DNA foci within the nucleolus. We interpret these foci as FCs. e–f and g–h Midgut cells expressing GFP-NS2 but counterstained with rabbit anti-Drosophila coilin to show Cajal bodies (blue arrowheads). Extra-nucleolar bodies containing GFP-NS2 (white arrowheads) were well separated from the Cajal bodies. (GIF 103 kb)

412_2016_597_MOESM1_ESM.tif (14.7 mb)
High resolution image (TIF 15,009 kb)
412_2016_597_Fig10_ESM.gif (59 kb)
Fig. S2

RT-PCR assays to test for off-target transcripts potentially affected by siRNAs expressed in da-GAL4 > UAS-RNAi-NS2.1 larvae. Actin5C and NS2 transcripts served as controls; Actin5C transcript remained steady in both control and NS2-depleted larvae, while NS2 transcripts dropped as expected. CG17259 and CG31140 transcripts consistently remained unchanged. D19A and jnj transcripts showed consistent depletions (see text) (GIF 59 kb)

412_2016_597_MOESM2_ESM.tif (2.6 mb)
High resolution image (TIF 2700 kb)
412_2016_597_Fig11_ESM.gif (221 kb)
Fig. S3

Variable loss of ribosomes in the midgut of da-GAL4 > UAS-RNAi-NS2.1 larvae. a Toluidine blue uniformly stained a thick (0.5 μm) section of wild-type midgut. Panel a represented 18 images. b A toluidine blue stained thick (0.5 μm) section of midgut from a da-GAL4 > UAS-RNAi-NS2.1 larva. Unequal staining suggested variable ribosome contents in neighboring cells. Panel b represented 38 images. c TEM analysis of two neighboring cells from the midgut shown in panel b. The basophilic cell on the left contained large amounts of cytosolic and rER-associated ribosomes, but its nucleolus showed extended GRs (arrow). The non-basophilic cell on the right contained few cytosolic ribosomes but numerous vesicles with surface-attached ribosomes. d Higher magnification of a similar non-basophilic cell as shown in panel c. Clusters of apparent cytosolic ribosomes were likely tethered to vesicle membranes not included in the section. Panels c and d represented 151 images (GIF 221 kb)

412_2016_597_MOESM3_ESM.tif (16.5 mb)
High resolution image (TIF 16,858 kb)
412_2016_597_MOESM4_ESM.docx (27 kb)
ESM 4 (DOCX 27 kb)


  1. Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, Marygold SJ, the FlyBase Consortium (2016) FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res 44(D1):D786–D792. doi: 10.1093/nar/gkv1046 CrossRefPubMedGoogle Scholar
  2. Baβler J, Grandi P, Gadal O, Leβmann T, Petfalski E, Tollervey D, Lechner J, Hurt E (2001) Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell 8:517–529. doi: 10.1016/S1097-2765(01)00342-2 CrossRefGoogle Scholar
  3. Baβler J, Kallas M, Hurt E (2006) The Nug1 GTPase reveals an N-terminal RNA binding domain that is essential for association with 60S pre-ribosomal particles. J Biol Chem 281:24737–24744. doi: 10.1074/jbc.M604261200 CrossRefGoogle Scholar
  4. Bodenstein D (1950) The postembryonic development of Drosophila. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 275–367Google Scholar
  5. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415PubMedGoogle Scholar
  6. Brand AH, Manoukian AS, Perrimon N (1994) Ectopic expression in Drosophila. Method Cell Biol 44:635–654. doi: 10.1016/S0091-679X(08)60936-X CrossRefGoogle Scholar
  7. Chang YY, Neufeld TP (2009) An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 20:2004–2019. doi: 10.1091/mbc.E08-12-1250 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cormier O, Mohseni N, Voytyuk I, Reed BH (2012) Autophagy can promote but is not required for epithelial cell extrusion in the amnioserosa of the Drosophila embryo. Autophagy 8(2):252–264. doi: 10.4161/auto.8.2.18618 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cui Z, DiMario PJ (2007) RNAi knockdown of Nopp140 induces Minute-like phenotypes in Drosophila. Mol Biol Cell 18(6):2179–2191. doi: 10.1091/mbc.E07-01-0074 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daigle DM, Rossi L, Berguis AM, Aravind L, Koonin EV, Brown ED (2002) YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-motifs and marked burst kinetics. Biochemistry 41:11109–11117. doi: 10.1021/bi020355q CrossRefPubMedGoogle Scholar
  11. de Cuevas M, Lee JK, Spradling AC (1996) alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 122(12):3959–3968PubMedGoogle Scholar
  12. Denton D, Shravage B, Simin R, Baehrecke EH, Kumar S (2010) Larval midgut destruction in Drosophila: not dependent on caspases but suppressed by the loss of autophagy. Autophagy 6(1):163–165. doi: 10.4161/auto.6.1.10601 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Easton LE, Shibata Y, Lukavsky PJ (2010) Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 16:647–653. doi: 10.1261/rna.1862210 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fan Y, Bergmann A (2010) The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ 17(3):534–539. doi: 10.1038/cdd.2009.185 CrossRefPubMedGoogle Scholar
  15. Feder N, Wolf MK (1965) Studies on nucleic acid metachromasy II. Metachromatic and orthochromatic staining by toluidine blue of nucleic acids in tissue sections. J Cell Biol 27:327–336. doi: 10.1083/jcb.27.2.327 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Filshie BK, Poulson DF, Waterhouse DF (1971) Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell 3(1):77–102. doi: 10.1016/S0040-8166(71)80033-2 CrossRefPubMedGoogle Scholar
  17. Finnegan DJ (1985) Transposable elements in eukaryotes. Int Rev Cytol 19:281–326. doi: 10.1016/S0074-7696(08)61376-5 CrossRefGoogle Scholar
  18. Florentin A, Arama E (2012) Caspase levels and execution efficiencies determine the apoptotic potential of the cell. J Cell Biol 196(4):513–527. doi: 10.1083/jcb.201107133 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Haerry TE, Khalsa O, O’Connor MB, Wharton KA (1998) Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila. Development 125(20):3977–3987PubMedGoogle Scholar
  20. Hartl TA, Ni J, Cao J, Suyama KL, Patchett S, Bussiere C et al (2013) Regulation of ribosome biogenesis by nucleostemin 3 promotes local and systemic growth in Drosophila. Genetics 194:101–115. doi: 10.1534/genetics.112.149104 CrossRefPubMedPubMedCentralGoogle Scholar
  21. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi: 10.1146/annurev-genet-102808-114910 CrossRefPubMedPubMedCentralGoogle Scholar
  22. He F, James A, Raje H, Ghaffari H, DiMario P (2015) Deletion of Drosophila Nopp140 induces subcellular ribosomopathies. Chromosoma 124(2):191–208. doi: 10.1007/s00412-014-0490-9 CrossRefPubMedGoogle Scholar
  23. Hedges J, West M, Johnson AW (2005) Release of the exporter adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsgp1. EMBO J 24:567–579. doi: 10.1038/sj.emboj.7600547 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Helminen HJ, Ericsson JLE (1971) Ultrastructural studies on prostatic involution in the rat. Mechanism of autophagy in epithelial cells, with special reference to the rough-surfaced endoplasmic reticulum. J Ultrastruct Res 36:708–724. doi: 10.1016/S0022-5320(71)90025-6 CrossRefPubMedGoogle Scholar
  25. Hernandez-Verdun D (2011) Structural organization of the nucleolus as a consequence of the dynamics of ribosome biogenesis. In: Olson MOJ (ed) The nucleolus, protein reviews 15. Springer, New York, pp 3–28. doi: 10.1007/978-1-4614-0514-6_1 Google Scholar
  26. Hovhanyan A, Herter EK, Pfannsteil J, Gallant P, Raabe T (2014) Drosophila Mbm is a nucleolar Myc and casein kinase 2 target required for ribosome biogenesis and cell growth of central brain neuroblasts. Mol Cell Biol 34:1878–1891. doi: 10.1128/MCB.00658-13 CrossRefPubMedPubMedCentralGoogle Scholar
  27. James A, Cindass R Jr, Mayer D, Terhoeve S, Mumphrey C, DiMario P (2013) Nucleolar stress in Drosophila melanogaster: RNAi-mediated depletion of Nopp140. Nucleus 4(2):123–133. doi: 10.4161/nucl.23944 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136:483–493. doi: 10.1242/dev.026955 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kallstrom G, Hedges J, Johnson A (2003) The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol Cell Biol 23:4344–4355. doi: 10.1128/MCB.23.12.4344-4355.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP (2008) A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 22:1877–1893. doi: 10.1101/gad.1670508 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72. doi: 10.1006/jmbi.2001.5378 CrossRefPubMedGoogle Scholar
  32. Li X, Zhuo R, Tiong S, Di Cara F, King-Jones K, Hughes SC, Campbell SD, Wevrick R (2013) The Smc5/Smc6/MAGE complex confers resistance to caffeine and genotoxic stress in Drosophila melanogaster. PLoS One 8(3):e59866. doi: 10.1371/journal.pone.0059866 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu J-L, Wu Z, Nizami Z, Deryusheva S, Rajendra TK, Beumer KJ, Gao H, Matera AG, Carroll D, Gall JG (2009) Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell 20:1661–1670. doi: 10.1091/mbc.E08-05-0525 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Martoja R, Ballan-Dufrançais C (1984) The ultrastructure of the digestive and excretory organs. In: King RC, Akai H (eds) Insect ultrastructure vol 2. Plenum Press, New York, pp 199–268. doi: 10.1007/978-1-4613-2715-8_6 CrossRefGoogle Scholar
  35. Matsuo E, Kanno S, Matsumoto S, Tsuneizumi K (2010) Drosophila nucleostemin 2 proved essential for early eye development and cell survival. Biosci Biotechnol Biochem 74(10):2120–2123. doi: 10.1271/bbb.100386 CrossRefPubMedGoogle Scholar
  36. Matsuo E, Nagamine T, Matsumoto S, Tsuneizumi K (2011) Drosophila GTPase nucleostemin 2 changes cellular distribution during larval development and the GTP-binding motif is essential to nucleoplasmic localization. Biosci Biotechnol Biochem 75(8):1511–1515. doi: 10.1271/bbb.110212 CrossRefPubMedGoogle Scholar
  37. Matsuo Y, Granneman S, Thoms M, Manikas R-G, Tollervey D, Hurt E (2014) Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505:112–116. doi: 10.1038/nature12731 CrossRefPubMedGoogle Scholar
  38. Meng L, Yasumoto H, Tsai RYL (2006) Multiple controls regulate nucleoplasm partitioning between nucleolus and nucleoplasm. J Cell Sci 119:5124–5136. doi: 10.1242/jcs.03292 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Meng L, Zhu Q, Tsai RYL (2007) Nucleolar trafficking of nucleostemin family proteins: common versus protein-specific mechanisms. Mol Cell Biol 27(24):8670–8682. doi: 10.1128/MCB.00635-07 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pieri L, Sassoli C, Romagnoli P, Domenici L (2002) Use of periodate-lysine-paraformaldehyde for the fixation of multiple antigens in human skin biopsies. Eur J Histochem 46:365–375. doi: 10.4081/1749 CrossRefPubMedGoogle Scholar
  41. Reimer G, Pollard KM, Penning CA, Ochs RL, Lischwe MA, Busch H, Tan EM (1987) Monoclonal autoantibody from a (New Zealand black x New Zealand white) F1 mouse and some scleroderma sera target an Mr 34,000 nucleolar protein of the U3 RNP particle. Arthritis Rheum 30(7):793–800. doi: 10.1002/art.1780300709 CrossRefPubMedGoogle Scholar
  42. Reynaud EG, Andrade MA, Bonneau F, Bach T, Ly N, Knop M, Scheffzek K, Pepperkok R (2005) Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization. BMC Biol 3:21. doi: 10.1186/1741-7007-3-21 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rosby R, Cui Z, Rogers E, deLivron MA, Robinson VL, DiMario PJ (2009) Knockdown of the Drosophila GTPase nucleostemin 1 impairs large ribosomal subunit biogenesis, cell growth, and midgut precursor cell maintenance. Mol Biol Cell 20:4424–4434. doi: 10.1091/mbc.E08-06-0592 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rubin GM (1983) Dispersed repetitive DNAs in Drosophila. In: Shapiro JA (ed) Mobile genetic elements. Academic, New York, pp 329–361. doi: 10.1016/B978-0-12-638680-6.50012-0 Google Scholar
  45. Saveanu C, Bienvenu D, Namane A, Gleizes P-E, Gas N, Jacquier A, Fromont-Racine M (2001) Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J 20:6475–6484. doi: 10.1093/emboj/20.22.6475 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365PubMedGoogle Scholar
  47. Strand DJ, McDonald JF (1985) Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res 13:4401–4410. doi: 10.1093/nar/13.12.4401 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sun X, Artavanis-Tsakonas S (1997) Secreted forms of DELTA and SERRATE define antagonists of Notch signaling in Drosophila. Development 124:3439–3448PubMedGoogle Scholar
  49. Tsai RYL (2011) New frontiers in nucleolar research: nucleostemin and related proteins. In: Olson MOJ (ed) The nucleolus, protein reviews 15. Springer, New York, pp 301–320. doi: 10.1007/978-1-4614-0514-6_13 Google Scholar
  50. Tsai RYL (2014) Turning a new page on nucleostemin and self-renewal. J Cell Sci 127:3885–3891. doi: 10.1242/jcs.154054 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tsai RYL, McKay RD (2002) A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev 16:2991–3003. doi: 10.1101/gad.55671 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tsai RYL, McKay RD (2005) A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol 168:179–184. doi: 10.1083/jcb.200409053 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yoshioka K, Honma H, Zushi M, Kondo S, Togashi S, Miyake T, Shiba T (1990) Virus-like particle formation of Drosophila copia through autocatalytic processing. EMBO J 9(2):535–541PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations