Advertisement

Chromosoma

, Volume 126, Issue 2, pp 245–260 | Cite as

New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae)

  • M. GiovannottiEmail author
  • V. A. Trifonov
  • A. Paoletti
  • I. G. Kichigin
  • P. C. M. O’Brien
  • F. Kasai
  • G. Giovagnoli
  • B. L. Ng
  • P. Ruggeri
  • P. Nisi Cerioni
  • A. Splendiani
  • J. C. Pereira
  • E. Olmo
  • W. Rens
  • V. Caputo Barucchi
  • M. A. Ferguson-Smith
Research Article

Abstract

Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X1X1X2X2/X1X2Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

Keywords

Anolis Comparative mapping Chromosome rearrangements Ctenonotus Norops Sex chromosome homology 

Notes

Acknowledgments

This research was supported by: funds provided by the Ministry of Education, University and Research (Italy) (“Ricerche di citogenetica molecolare sui sistemi di determinazione del sesso nei rettili squamati, sottordine Sauria”, grant number: PRIN2009/20093HYH97) to Vincenzo Caputo Barucchi, by Budget Projects 0310-2014-0003, 0310-2014-0008, 0310-2014-0009 provided to Vladimir A. Trifonov.

Compliance with ethical standards

It was not necessary to get an approval of the institutional animal care and use committee (IACUC) or any relevant ethics body since this study on animal tissues complies with article 2e of D.L. 26/2014 of the Italian Government derived from Directive 2010/63/EU of the European Parliament and of the Council (article 1, paragraph 5e) on the protection of animals used for scientific purposes.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Alföldi J, Di Palma F, Grabherr M et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591. doi: 10.1038/nature10390 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. Bachtrog D, Kirkpatrick M, Mank JE et al (2011) Are all sex chromosomes created equal? Trends Genet 27:350–357CrossRefPubMedGoogle Scholar
  4. Brandley MC, Wynn A, de Queiroz K (2006) Karyotype and relationships of Anolis desechensis. J Herpetol 40:136–139CrossRefGoogle Scholar
  5. Castiglia R, Annesi F, Bezerra AMR, García A, Flores-Villela O (2010) Cytotaxonomy and DNA taxonomy of lizards (Squamata, Sauria) from a tropical dry forest in the Chamela-Cuixmala Biosphere Reserve on the coast of Jalisco, Mexico. Zootaxa 2508:1–29Google Scholar
  6. Castiglia R, Flores-Villela O, Ramos Bezerra AM, Muñoz A, Gornung E (2013) Pattern of chromosomal changes in ‘beta’ Anolis (Norops group) (Squamata: Polychrotidae) depicted by an ancestral state analysis. Zool Stud 52:60CrossRefGoogle Scholar
  7. De Smet WHO (1981) Description of the orcein stained karyotypes of 27 lizard species (Lacertilia Reptilia) belonging to the families Iguanidae, Agamidae, Chameleontidae and Gekkonidae (Ascalabota). Acta Zool Pathol Antverp 76:35–72Google Scholar
  8. Ezaz T, Sarre SD, O’Meally D, Graves JAM (2009a) Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet Genome Res 127:249–260. doi: 10.1159/000300507 CrossRefPubMedGoogle Scholar
  9. Ezaz T, Moritz B, Waters P, Graves JAM, Georges A, Sarre SD (2009b) The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Res 17:965–973. doi: 10.1007/s10577-009-9102-6 CrossRefPubMedGoogle Scholar
  10. Ezaz T, Quinn AE, Sarre SD, O’Meally D, Georges A, Graves JAM (2009c) Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards. Chromosome Res 17:91–98. doi: 10.1007/s10577-008-9019-5 CrossRefPubMedGoogle Scholar
  11. Gamble T, Geneva AJ, Glor RE, Zarkover D (2014) Anolis sex chromosomes are derived from a single ancestral pair. Evolution 68(4):1027–1041. doi: 10.1111/evo.12328 CrossRefPubMedGoogle Scholar
  12. Gorman GC (1973) The chromosomes of the reptilian: a cytotaxonomic interpretation. In: Chiarelli B, Capanna E (eds) Cytotaxonomy and vertebrate evolution. Academic, London, pp 349–424Google Scholar
  13. Gorman GC, Atkins L (1969) The zoogeography of Lesser Antillean Anolis lizards—an analysis based upon chromosomes and lactic dehydrogenases. Bull Mus Comp Zool 138:53–80Google Scholar
  14. Graves JAM (2008) Weird animal genomes and evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 42:565–586. doi: 10.1146/annurev.genet.42.110807.091714 CrossRefGoogle Scholar
  15. Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C (2009) The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet Genome Res 125:125–131. doi: 10.1159/000227837 CrossRefPubMedGoogle Scholar
  16. Kawai A, Ishijima J, Nishida C, Kosaka A, Ota H, Kohno S, Matsuda Y (2009) The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma 118:43–51. doi: 10.1007/s00412-008-0176-2 CrossRefPubMedGoogle Scholar
  17. Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, BerkeleyGoogle Scholar
  18. Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y (2006) Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci U S A 103:18190–18195. doi: 10.1073/pnas.0605274103 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Muller HJ (1914) A gene for the fourth chromosome of Drosophila. J Exp Zool 17:325–336CrossRefGoogle Scholar
  20. Nicholson KE, Crother BI, Guyer C, Savage JM (2012) It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 3477:1–108Google Scholar
  21. Ohno S (1967) Sex chromosomes and sex-linked genes. Springer Verlag, Berlin, GermanyCrossRefGoogle Scholar
  22. Olmo E, Signorino G (2005) Chromorep: a reptile chromosomes database., http://chromorep.univpm.it/. Accessed 28 August 2015Google Scholar
  23. Pala I, Naurin S, Stervander M et al (2011) Evidence of a neo-sex chromosome in birds. Heredity 108:264–272. doi: 10.1038/hdy.2011.70 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Poe S (2013) 1986 Redux: new genera of anoles (Squamata: Dactyloidae) are unwarranted. Zootaxa 3626:295–299. doi: 10.11646/zootaxa.3626.2.7 CrossRefPubMedGoogle Scholar
  25. Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, O’Brien PCM, Caputo V, Olmo E, Ferguson-Smith MA, Rens W (2011) Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120:455–468. doi: 10.1007/s00412-011-0322-0 CrossRefPubMedGoogle Scholar
  26. Rens W, O’Brien PCM, Yang F, Graves JAM, Ferguson-Smith MA (1999) Karyotype relationships between four distantly related marsupials revealed by reciprocal chromosome painting. Chromosome Res 7:461–474CrossRefPubMedGoogle Scholar
  27. Rens W, Fu B, O’Brien PCM, Ferguson-Smith MA (2006) Cross-species chromosome painting. Nat Protoc 1:783–790. doi: 10.1038/nprot.2006.91 CrossRefPubMedGoogle Scholar
  28. Rovatsos M, Altmanová M, Pokorná M, Kratochvíl L (2014a) Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution 68(7):2079–2085. doi: 10.1111/evo.12357 CrossRefPubMedGoogle Scholar
  29. Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L (2014b) Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett 10(3):20131093. doi: 10.1098/rsbl.2013.1093 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shetty S, Griffin DK, Graves JAM (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289–295CrossRefPubMedGoogle Scholar
  31. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Expl Cell Res 75:304–306CrossRefGoogle Scholar
  32. Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenrkjöld M, Pfragner R, Ponder BAJ (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263CrossRefPubMedGoogle Scholar
  33. Townsend TM, Mulcahy DG, Noonan BP, Sites JW Jr, Kuczynski CA, Wiens JJ, Reeder TW (2011) Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet Evol 61:363–380. doi: 10.1016/j.ympev.2011.07.008 CrossRefPubMedGoogle Scholar
  34. Vicoso B, Kaiser VB, Bachtrog D (2013) Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc Natl Acad Sci U S A 110(16):6453–6458. doi: 10.1073/pnas.1217027110 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Webster TP, Williams EE, Hall WP (1972) Fission in the evolution of a lizard karyotype. Science 177:611–613CrossRefPubMedGoogle Scholar
  36. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Giovannotti
    • 1
    • 2
    Email author
  • V. A. Trifonov
    • 3
    • 4
  • A. Paoletti
    • 1
  • I. G. Kichigin
    • 3
  • P. C. M. O’Brien
    • 2
  • F. Kasai
    • 2
  • G. Giovagnoli
    • 1
  • B. L. Ng
    • 5
  • P. Ruggeri
    • 1
  • P. Nisi Cerioni
    • 1
  • A. Splendiani
    • 1
  • J. C. Pereira
    • 2
    • 6
  • E. Olmo
    • 1
  • W. Rens
    • 2
  • V. Caputo Barucchi
    • 1
    • 7
  • M. A. Ferguson-Smith
    • 2
  1. 1.Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Cambridge Resource Centre for Comparative Genomics, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  3. 3.Institute of Molecular and Cellular BiologySB RASNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Cytometry Core FacilityWellcome Trust Sanger InstituteCambridgeUK
  6. 6.Cytocell LtdCambridgeUK
  7. 7.Consiglio Nazionale delle RicercheIstituto di Scienze Marine Sezione Pesca MarittimaAnconaItaly

Personalised recommendations