, Volume 125, Issue 2, pp 337–351 | Cite as

Telomere homeostasis in mammalian germ cells: a review

  • Rita Reig-Viader
  • Montserrat Garcia-CaldésEmail author
  • Aurora Ruiz-HerreraEmail author


Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.


Telomeres TERRA Telomerase Meiosis Spermatocytes Oocytes Infertility 



Alternative lengthening of telomere




Double-strand breaks


In vitro fertilization




KASH domain-containing protein 5


Linker of nucleoskeleton and cytoskeleton


Nuclear envelope


Protection of telomeres 1


Repressor and activator protein 1


Structural maintenance of chromosomes 1β


Stroma antigen 3




SUN domain-containing protein 1


SUN domain-containing protein 2


Telomere repeat-binding bouquet formation protein 1


Telomeric repeat-containing RNA


Telomerase reverse transcriptase


TRF1-interacting nuclear factor 2


TIN2- and POT1-interacting nuclear protein 1


Telomerase RNA component


Telomeric repeat amplification protocol


Telomeric repeat-binding factor 1


Telomeric repeat-binding factor 2



R.R.-V. was the recipient of a PIF fellowship from the Universitat Autònoma de Barcelona. This work was partially funded by the Generalitat de Catalunya (2009SGR1107).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

R.R.-V. declares that she has no conflict of interest. M.G.-C. declares that she has no conflict of interest. A.R.-H. declares that she has no conflict of interest.


  1. Achi MV, Ravindranath N, Dym M (2000) Telomere length in male germ cells is inversely correlated with telomerase activity. Biol Reprod 63:591–8PubMedCrossRefGoogle Scholar
  2. Adelfalk C et al (2009) Cohesin SMC1beta protects telomere in meiocytes. J Cell Biol 187:185–99PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albizua I, Rambo-Martin BL, Allen EG, He W, Amin AS, Serman SL (2015) Association between telomere length and chromosome 21 nondisjunction in the oocyte. Hum Genet. doi: 10.1007/s00439-015-1603-0
  4. Allsopp RC et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89:10114–8PubMedPubMedCentralCrossRefGoogle Scholar
  5. Antunes DM, Kalmbach KH, Wang F, Dracxler RC, Seth-Smith ML, Kramer Y, Buldo-Licciardi J, Kohlrausch FB, Keefe DL (2015) A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity as well as increasing mean telomere length in human spermatozoa with advancing age. J Assist Reprod Genet. doi: 10.1007/s10815-015-0574-3
  6. Armanios M (2013) Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest 123:996–1002PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arnoult N, Van Beneden A, Decottignies A (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol 20:244CrossRefGoogle Scholar
  8. Arora R, Brun CM, Azzalin CM (2012) Transcription regulates telomere dynamics in human cancer cells. RNA 18:684–93PubMedPubMedCentralCrossRefGoogle Scholar
  9. Azzalin CM et al (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 31:798–801CrossRefGoogle Scholar
  10. Baird DM et al (2006) Telomere instability in the male germline. Hum Mol Genet 15:45–51PubMedCrossRefGoogle Scholar
  11. Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) Positional cloning and characterization of mouse mei8, a disrupted allele of the meiotic cohesin Rec8. Genesis 40:194–94CrossRefGoogle Scholar
  12. Bettegowda A, Wilkinson MF (2010) Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365:1637–51PubMedPubMedCentralCrossRefGoogle Scholar
  13. Betts DH, King WA (1999) Telomerase activity and telomere detection during early bovine development. Dev Genet 25:397–403PubMedCrossRefGoogle Scholar
  14. Biffi G, Tannahill D, Balasubramanian S (2012) An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J Am Chem Soc 134:11974–6PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boateng KA et al (2013) Homologous pairing preceding SPO11-mediated double-strand breaks in mice. Dev Cell 24:196–205PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bolzán AD, Bianchi MS (2006) Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 612:189–214PubMedCrossRefGoogle Scholar
  17. Butts S et al (2009) Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab 94:4835–43PubMedPubMedCentralCrossRefGoogle Scholar
  18. Canela A, Vera E, Klatt P, Blasco MA (2007) High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A 104:5300–5PubMedPubMedCentralCrossRefGoogle Scholar
  19. Caslini C, Connelly JA, Serna A, Broccoli D, Hess JL (2009) MLL associates with telomere and regulates telomeric repeat-containing RNA transcription. Mol Cell Biol 29:4519–26PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11:319–30PubMedCrossRefGoogle Scholar
  21. Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69PubMedCrossRefGoogle Scholar
  22. Choi J et al (2008) TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet 4:e10PubMedPubMedCentralCrossRefGoogle Scholar
  23. Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Morton Bradbury E, Zalensky A (2004) Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84:745–56PubMedCrossRefGoogle Scholar
  24. Conrad MN, Dominguez AM, Dresser ME (1997) Ndj1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276:1252–5PubMedCrossRefGoogle Scholar
  25. Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392:828–31PubMedCrossRefGoogle Scholar
  26. Cram DS, O’Bryan MK, Kretser DM (2001) Male infertility genetics—the future. J Androl 22:738–46PubMedGoogle Scholar
  27. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B et al (2006) Coupling of the nucleus and cytoplasm role of the LINC complex. J Cell Biol 172:41–53PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cusanelli E, Romero CA, Chartrand P (2013) Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell 51:780–91PubMedCrossRefGoogle Scholar
  29. Daniel K et al (2014) Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein. BMC Cell Biol 15:17PubMedPubMedCentralCrossRefGoogle Scholar
  30. De Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–10PubMedCrossRefGoogle Scholar
  31. De Lange T et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–27PubMedPubMedCentralCrossRefGoogle Scholar
  32. Deng Z et al (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 35:403–13PubMedPubMedCentralCrossRefGoogle Scholar
  33. Deng Z, Campbell AE, Lieberman PM (2010) TERRA, CpG methylation, and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle 9:69–74PubMedPubMedCentralCrossRefGoogle Scholar
  34. Deng Z et al (2012a) A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J 31:4165–78PubMedPubMedCentralCrossRefGoogle Scholar
  35. Deng Z et al (2012b) Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci 125:4383–94PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M (2007) SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–72PubMedCrossRefGoogle Scholar
  37. Dorland M, van Kooij RJ, te Velde ER (1998) General ageing and ovarian ageing. Maturitas 30:113–8PubMedCrossRefGoogle Scholar
  38. Edwards RG (1970) Are oocytes formed and used sequentially in the mammalian ovary? Philos Trans R Soc Lond B Biol Sci 259:103–5PubMedCrossRefGoogle Scholar
  39. Eichenlaub-Ritter U, Vogt E, Yin H, Gosden R (2004) Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online 8:45–58PubMedCrossRefGoogle Scholar
  40. Eisenberg DT, Hayes MG, Kuzawa CW (2012) Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proc Natl Acad Sci U S A 109:10251–6PubMedPubMedCentralCrossRefGoogle Scholar
  41. Eisenhauer KM et al (1997) Telomerase activity in female and male rat germ cells undergoing meiosis and in early embryos. Biol Reprod 56:1120–5PubMedCrossRefGoogle Scholar
  42. Fajkus J (2006) Detection of telomerase activity by the TRAP assay and its variants and alternatives. Clin Chim Acta 371:25–31PubMedCrossRefGoogle Scholar
  43. Farnung BO et al (2012) Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One 7:e35714PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ferlin A et al (2013) In young men sperm telomere length is related to sperm number and parental age. Hum Reprod 28:3370–6PubMedCrossRefGoogle Scholar
  45. Garcia M, Dietrich A, Freixa L, Vink AC, Ponsà M, Egozcue J (1987) Development of the first meiotic prophase stages in human fetal oocytes observed by light and electron microscopy. Hum Genet 77:223–32PubMedCrossRefGoogle Scholar
  46. García M, Dietrich A, Pujol R, Egozcue J (1989) Nucleolar structures in chromosome and SC preparations from human oocytes at first meiotic prophase. Hum Genet 82:147–53PubMedCrossRefGoogle Scholar
  47. Garcia. M., & Ponsa. I., 2003. “Introducción a las bases celulares y genéticas de la gametogénesis femenina”. pp 50–57. In: Tratado de ginecología, obstreticia y medicina de la reproducción. Ed. Lluis Cabero Roura. Ed. Medica PanamericanaGoogle Scholar
  48. Garcia-Cruz R, Roig I, Caldés MG (2009) Maternal origin of the human aneuploidies. Are homolog synapsis and recombination to blame? Notes (learned) from the underbelly. Genome Dyn 5:128–36PubMedCrossRefGoogle Scholar
  49. Garcia-Cruz R, Brieno MA, Roig I, Grossmann M, Velilla E, Pujol A et al (2010) Dynamics of cohesin proteins REC8, STAG3, SMC1β and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum Reprod 25:2316–27PubMedCrossRefGoogle Scholar
  50. Ghosh S, Feingold E, Chakraborty S, Dey SK (2010) Telomere length is associated with types of chromosome 21 nondisjunction: a new insight into the maternal age effect on Down syndrome birth. Hum Genet 127:403–9PubMedCrossRefGoogle Scholar
  51. Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO (2000) Human sperm telomere–binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151:1591–8PubMedPubMedCentralCrossRefGoogle Scholar
  52. Goetz P, Chandley AC, Speed RM (1984) Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse. J Cell Sci 65:249–63PubMedGoogle Scholar
  53. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43:405–13PubMedCrossRefGoogle Scholar
  54. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–14PubMedCrossRefGoogle Scholar
  55. Günes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152:390–3PubMedCrossRefGoogle Scholar
  56. Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219:604–11PubMedCrossRefGoogle Scholar
  57. Hamada A, Esteves SC, Nizza M, Agarwal A (2012) Unexplained male infertility: diagnosis and management. Int Braz J Urol 38:576–94PubMedCrossRefGoogle Scholar
  58. Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11:124–36PubMedGoogle Scholar
  59. Hann MC, Lau PE, Tempest HG (2011) Meiotic recombination and male infertility: from basic science to clinical reality? Asian J Androl 13:212–8PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hanna CW et al (2009) Telomere length and reproductive aging. Hum Reprod 24:1206–11PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–91PubMedCrossRefGoogle Scholar
  62. Hemann MT, Rudolph KL, Strong MA, DePinho RA, Chin L, Greider CW (2001) Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell 12:2023–30PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA (2005) SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 37:1351–1355PubMedCrossRefGoogle Scholar
  64. Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL, Burke B, Roux KJ (2013) A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J Cell Biol 202:1023–1039PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hug N, Lingner J (2006) Telomere length homeostasis. Chromosoma 115:413–425PubMedCrossRefGoogle Scholar
  66. Hunt PA, Hassold TJ (2008) Human female meiosis: what makes a good egg go bad? Trends Genet 24:86–93PubMedCrossRefGoogle Scholar
  67. Iglesias N et al (2011) Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Rep 12:587–93PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jørgensen PB, Fedder J, Koelvraa S, Graakjaer J (2013) Age-dependence of relative telomere length profiles during spermatogenesis in man. Maturitas 75:380–5PubMedCrossRefGoogle Scholar
  69. Jungwirth A et al (2013) Guidelines on male infertility. Male Infertility—European Association of Urology, 2012.
  70. Kalmbach KH et al (2013) Telomeres and human reproduction. Fertil Steril 99:23–9PubMedCrossRefGoogle Scholar
  71. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–9PubMedCrossRefGoogle Scholar
  72. Keefe DL (2014) In every end there is a beginning—telomeres in male reproduction. Fertil Steril 102:690–1PubMedCrossRefGoogle Scholar
  73. Keefe DL, Liu L (2009) Telomeres and reproductive aging. Reprod Fertil Dev 21:10–4PubMedCrossRefGoogle Scholar
  74. Keefe DL et al (2005) Telomere length predicts embryo fragmentation after in vitro fertilization in women—toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol 192:1256–60PubMedCrossRefGoogle Scholar
  75. Keefe DL, Marquard K, Liu L (2006) The telomere theory of reproductive senescence in women. Curr Opin Obstet Gynecol 18:280–5PubMedCrossRefGoogle Scholar
  76. Keefe DL, Liu L, Marquad K (2007) Telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci 64:139–43PubMedCrossRefGoogle Scholar
  77. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by SPO11, a member of a widely conserved protein family. Cell 88:375–84PubMedCrossRefGoogle Scholar
  78. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–5PubMedCrossRefGoogle Scholar
  79. Kim M, Xu L, Blackburn EH (2003) Catalytically active human telomerase mutants with allele-specific biological properties. Exp Cell Res 288:277–87PubMedCrossRefGoogle Scholar
  80. Kimmins S, Kotaja N, Davidson I, Sassone-Corsi P (2004) Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction 128:5–12PubMedCrossRefGoogle Scholar
  81. Kimura M et al (2008) Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet 4:e37PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347:400–2PubMedCrossRefGoogle Scholar
  83. Klutstein M, Cooper JP (2014) The chromosomal courtship dance—homolog pairing in early meiosis. Curr Opin Cell Biol 26:123–131PubMedCrossRefGoogle Scholar
  84. Lansdorp PM, Verwoerd NP, Ven de Rijke FM, Dragowska V, Little MT, Dirks RW et al (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–91PubMedCrossRefGoogle Scholar
  85. Li L, Lejnine S, Makarov V, Langmore JP (1998) In vitro and in vivo reconstitution and stability of vertebrate chromosome ends. Nucleic Acids Res 26:2908–16PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liebe B et al (2004) Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell 15:827–837PubMedPubMedCentralCrossRefGoogle Scholar
  87. Link J et al (2013) The meiotic nuclear lamina regulates chromosome dynamics and promotes efficient homologous recombination in the mouse. PLoS Genet 9:e1003261PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liu L, Keefe DL (2002) Ageing-associated aberration in meiosis of oocytes from senescence-accelerated mice. Hum Reprod 17:2678–85PubMedCrossRefGoogle Scholar
  89. Liu L, Blasco MA, Keefe DL (2002a) Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles. EMBO Rep 3:230–4PubMedPubMedCentralCrossRefGoogle Scholar
  90. Liu L, Blasco MA, Trimarchi J, Keefe D (2002b) An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol 249:74–84PubMedCrossRefGoogle Scholar
  91. Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002c) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40–6PubMedCrossRefGoogle Scholar
  92. Liu L et al (2004) Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci U S A 101:6496–501PubMedPubMedCentralCrossRefGoogle Scholar
  93. Liu L et al (2007) Telomere lengthening early in development. Nat Cell Biol 9:1436–41PubMedCrossRefGoogle Scholar
  94. Lombard DB, Guarente L (2000) Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res 60:2331–4PubMedGoogle Scholar
  95. López de Silanes I, Stagno d’Alcontres M, Blasco MA (2010) TERRA transcripts are bound by a complex array of RNA-binding proteins. Nat Commun 1:33PubMedGoogle Scholar
  96. López de Silanes I, Graña O, De Bonis ML, Dominguez O, Pisano DG, Blasco MA (2014) Identification of TERRA locus unveils a telomere protection role through association to nearly all chromosomes. Nat Commun 5:4723PubMedCrossRefGoogle Scholar
  97. Ludérus ME et al (1996) Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J Cell Biol 135:867–81PubMedCrossRefGoogle Scholar
  98. Marion RM et al (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–54PubMedCrossRefGoogle Scholar
  99. Masutomi K et al (2005) The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci U S A 102:8223–27CrossRefGoogle Scholar
  100. Meyer-Ficca M, Muller-Navia J, Scherthan H (1998) Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci 111:1363–70PubMedGoogle Scholar
  101. Molenaar C et al (2003) Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J 22:6631–41PubMedPubMedCentralCrossRefGoogle Scholar
  102. Morelli MA, Cohen PE (2005) Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130:761–81PubMedCrossRefGoogle Scholar
  103. Morimoto A, Shibuya H, Zhu X, Kim J, Ishiguro KI, Han M, Watanabe Y (2012) A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J Cell Biol 198:165–72PubMedPubMedCentralCrossRefGoogle Scholar
  104. Moskovtsev SI, Willis J, White J, Mullen JB (2010) Disruption of telomere-telomere interactions associated with DNA damage in human spermatozoa. Syst Biol Reprod Med 56:407–12PubMedCrossRefGoogle Scholar
  105. Moyzis RK et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mukherjee S, Firpo EJ, Wang Y, Roberts JM (2011) Separation of telomerase functions by reverse genetics. Proc Natl Acad Sci U S A 108:E1363–71PubMedPubMedCentralCrossRefGoogle Scholar
  107. Munné S (2005) Analysis of chromosome segregation during preimplantation genetic diagnosis in both male and female translocation heterozygotes. Cytogenet Genome Res 111:305–9PubMedCrossRefGoogle Scholar
  108. Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14:69–82PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, Chawla R et al (2009) CpG-island promoters drive transcription of human telomeres. RNA 15:2186–94PubMedPubMedCentralCrossRefGoogle Scholar
  111. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–81PubMedPubMedCentralGoogle Scholar
  112. Oud JL, de Jong JH, de Rooij DG (1979) A sequential analysis of meiosis in the male mouse using a restricted spermatocyte population obtained by a hydroxyurea/triaziquone treatment. Chromosoma 71:237–48PubMedCrossRefGoogle Scholar
  113. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–34PubMedCrossRefGoogle Scholar
  114. Pandita TK, Hunt CR, Sharma GG, Yang Q (2007) Regulation of telomere movement by telomere chromatin structure. Cell Mol Life Sci 64:131–8PubMedCrossRefGoogle Scholar
  115. Park JI et al (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460:66–72PubMedPubMedCentralCrossRefGoogle Scholar
  116. Pfeifer C, Thomsen PD, Scherthan H (2001) Centromere and telomere redistribution precedes homologue pairing and terminal synapsis initiation during prophase I of cattle spermatogenesis. Cytogenet Cell Genet 93:304–14PubMedCrossRefGoogle Scholar
  117. Pfeifer C, Scherthan H, Thomsen PD (2003) Sex-specific telomere redistribution and synapsis initiation in cattle oogenesis. Dev Biol 255:206–15PubMedCrossRefGoogle Scholar
  118. Pfeiffer V, Lingner J (2012) TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet 8:e1002747PubMedPubMedCentralCrossRefGoogle Scholar
  119. Polani PE, Crolla JA (1991) A test of the production line hypothesis of mammalian oogenesis. Hum Genet 88:64–70PubMedCrossRefGoogle Scholar
  120. Porro A, Feuerhahn S, Reichenbach P, Lingner J (2010) Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 30:4808–17PubMedPubMedCentralCrossRefGoogle Scholar
  121. Porro A et al (2014a) Functional characterization of the TERRA transcriptome at damaged telomeres. Nat Commun 5:5379PubMedPubMedCentralCrossRefGoogle Scholar
  122. Porro A, Feuerhahn S, Lingner J (2014b) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 6:765–776PubMedCrossRefGoogle Scholar
  123. Ravindranath N et al (1997) Loss of telomerase activity during male germ cell differentiation. Endocrinology 138:4026–9PubMedCrossRefGoogle Scholar
  124. Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38:5797–806PubMedPubMedCentralCrossRefGoogle Scholar
  125. Redon S, Zemp I, Lingner J (2013) A three-state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Res 41:9117–28Google Scholar
  126. Reig-Viader R et al (2013) Telomeric repeat-containing RNA and telomerase in human fetal oocytes. Hum Reprod 28:414–22PubMedCrossRefGoogle Scholar
  127. Reig-Viader R et al (2014a) Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis. Biol Reprod 90:103–113PubMedCrossRefGoogle Scholar
  128. Reig-Viader R et al (2014b) Telomere homeostasis is compromised in spermatocytes from patients with idiopathic infertility. Fertil Steril 102:728–38PubMedCrossRefGoogle Scholar
  129. Revenkova E et al (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–62PubMedCrossRefGoogle Scholar
  130. Riethman H (2008) Human telomere structure and biology. Annu Rev Genomics Hum Genet 9:1–19PubMedCrossRefGoogle Scholar
  131. Riou L et al (2005) The telomerase activity of adult mouse testis resides in the spermatogonial alpha6-integrin-positive side population enriched in germinal stem cells. Endocrinology 146:3926–32PubMedCrossRefGoogle Scholar
  132. Rodríguez S et al (2005) Critically short telomeres are associated with sperm DNA fragmentation. Fertil Steril 84:843–5PubMedCrossRefGoogle Scholar
  133. Roig I et al (2004) Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 113:22–33PubMedCrossRefGoogle Scholar
  134. Romanienko PJ, Camerini-Otero RD (2000) The mouse SPO11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–87PubMedCrossRefGoogle Scholar
  135. Sampl S et al (2012) Expression of telomeres in astrocytoma WHO grade 2 to 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade. Transl Oncol 5:56–65PubMedPubMedCentralCrossRefGoogle Scholar
  136. Santiso R et al (2010) Swim-up procedure selects spermatozoa with longer telomere length. Mutat Res 688:88–90PubMedCrossRefGoogle Scholar
  137. Sato A, Isaac B, Phillips CM, Rillo R, Carlton PM, Wynne DJ et al (2009) Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139:907–19PubMedPubMedCentralCrossRefGoogle Scholar
  138. Scheibe M et al (2013) Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators. Genome Res 23:2149–57PubMedPubMedCentralCrossRefGoogle Scholar
  139. Scherthan H (2007) Telomere attachment and clustering during meiosis. Cel Mol Life Sci 64:117–24CrossRefGoogle Scholar
  140. Scherthan H et al (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134:1109–25PubMedCrossRefGoogle Scholar
  141. Scherthan H et al (2000) Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Mol Biol Cell 11:4189–203PubMedPubMedCentralCrossRefGoogle Scholar
  142. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature 10:228–36Google Scholar
  143. Sfeir A, De Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336:593–7PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sharma GG et al (2003) HTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22:131–46PubMedCrossRefGoogle Scholar
  145. Sheng X, Tong N, Tao G, Luo D, Wang M, Fang Y et al (2013) TERT polymorphisms modify the risk of acute lymphoblastic leukemia in Chinese children. Carcinogenesis 34:228–35PubMedCrossRefGoogle Scholar
  146. Shibuya H, Watanabe Y (2014) The meiosis-specific modification of mammalian telomeres. Cell Cycle 13:2024–2028PubMedPubMedCentralCrossRefGoogle Scholar
  147. Shkreli M et al (2011) Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat Med 18:111–9PubMedPubMedCentralCrossRefGoogle Scholar
  148. Smirnova A et al (2013) TERRA expression levels do not correlate with telomere length and radiation sensitivity in human cancer cell lines. Fron Oncol 3:115Google Scholar
  149. Solov’eva L, Svetlova M, Bodinski D, Zalensky AO (2004) Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosom Res 12:817–823CrossRefGoogle Scholar
  150. Speed RM (1982) Meiosis in the foetal mouse ovary. I. An analysis at the light microscope level using surface-spreading. Chromosoma 85:427–37PubMedCrossRefGoogle Scholar
  151. Speed RM (1985) The prophase stages in human foetal oocytes studied by light and electron microscopy. Hum Genet 69:69–75PubMedCrossRefGoogle Scholar
  152. Starling JA, Maule J, Hastie ND, Allshire RC (1990) Extensive telomere repeat arrays in mouse are hypervariable. Nucleic Acids Res 18:6881–8PubMedPubMedCentralCrossRefGoogle Scholar
  153. Stewart CL, Burke B (2014) The missing LINC: a mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 5:3–10PubMedPubMedCentralCrossRefGoogle Scholar
  154. Subramanian R, Kapoor TM (2013) Slipping past the spindle assembly checkpoint. Nat Cell Biol 15:1261–3PubMedCrossRefGoogle Scholar
  155. Tanemura K et al (2005) Dynamic rearrangement of telomeres during spermatogenesis in mice. Dev Biol 281:196–207PubMedCrossRefGoogle Scholar
  156. Tease C, Jones GH (1978) Analysis of exchanges in differentially stained meiotic chromosomes of Locusta mipatoria after BrdU-substitution and FPG staining. Chromosoma 69:163–78CrossRefGoogle Scholar
  157. Thijssen PE et al (2013) Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. Epigenetics 8:512–21PubMedPubMedCentralCrossRefGoogle Scholar
  158. Thilagavathi J, Venkatesh S, Dada R (2012) Telomere length in reproduction. Andrologia 45:289–304PubMedCrossRefGoogle Scholar
  159. Thilagavathi J et al (2013a) Analysis of sperm telomere length in men with idiopathic infertility. Arch Gynecol Obstet 287:803–7PubMedCrossRefGoogle Scholar
  160. Thilagavathi J et al (2013b) Analysis of telomere length in couples experiencing idiopathic recurrent pregnancy loss. J Assist Reprod Genet 30:793–8PubMedPubMedCentralCrossRefGoogle Scholar
  161. Treff NR, Su J, Taylor D, Scott RT (2011) Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet 7:e1002161PubMedPubMedCentralCrossRefGoogle Scholar
  162. Turner S, Hartshorne GM (2013) Telomere lengths in human pronuclei, oocytes and spermatozoa. Mol Hum Reprod 19:510–8PubMedCrossRefGoogle Scholar
  163. Van Beneden A, Arnoult N, Decottignies A (2013) Telomeric RNA expression: length matters. Front Oncol 3:178PubMedPubMedCentralGoogle Scholar
  164. Voet T, Liebe B, Labaere C, Marynen P, Scherthan H (2003) Telomere-independent homologue pairing and checkpoint escape of accessory ring chromosomes in male mouse meiosis. J Cell Biol 162:795–807PubMedPubMedCentralCrossRefGoogle Scholar
  165. Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U (2008) Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mut Res 651:14–29CrossRefGoogle Scholar
  166. Wang F et al (2013) Robust measurement of telomere length in single cells. Proc Natl Acad Sci U S A 110:E1906–12PubMedPubMedCentralCrossRefGoogle Scholar
  167. Webb CJ, Wu Y, Zakian VA (2013) DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 5:pii: a012666CrossRefGoogle Scholar
  168. Winkel K, Alsheimer M, Ollinger R, Benavente R (2009) Protein SYCP2 provides a link between transverse filaments and lateral elements of mammalian synaptonemal complexes. Chromosoma 118:259–67PubMedCrossRefGoogle Scholar
  169. Wright WE et al (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–9PubMedCrossRefGoogle Scholar
  170. Wright DL et al (2001) Characterization of telomerase activity in the human oocyte and preimplantation embryo. Mol Hum Reprod 7:947–55PubMedCrossRefGoogle Scholar
  171. Xu Y, Komiyama M (2012) Structure, function and targeting of human telomere RNA. Methods 57:100–5PubMedCrossRefGoogle Scholar
  172. Xu J, Yang X (2000) Telomerase activity in bovine embryos during early development. Biol Reprod 63:1124–8PubMedCrossRefGoogle Scholar
  173. Yamada-Fukunaga T et al (2013) Age-associated telomere shortening in mouse oocytes. Reprod Biol Endocrinol 11:108PubMedPubMedCentralCrossRefGoogle Scholar
  174. Yamamoto Y et al (1999) Postmeiotic modifications of spermatogenic cells are accompanied by inhibition of telomerase activity. Urol Res 27:336–45PubMedCrossRefGoogle Scholar
  175. Yan L, Wu S, Zhang S, Ji G, Gu A (2014) Genetic variants in telomerase reverse transcriptase (TERT) and telomerase-associated protein 1 (TEP1) and the risk of male infertility. Gene 534:139–43PubMedCrossRefGoogle Scholar
  176. Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ (2006) Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol 173:497–507PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yang Q, Zhao F, Dai S, Zhang N, Zhao W, Bai R, Sun Y (2015) Sperm telomere length is positively associated with the quality of early embryonic development. Hum Reprod 30:1876–81PubMedCrossRefGoogle Scholar
  178. Yashima K et al (1998) Expression of the RNA component of telomerase during human development and differentiation. Cell Growth Differ 9:805–13PubMedGoogle Scholar
  179. Yehezkel S et al (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17:2776–89PubMedCrossRefGoogle Scholar
  180. Yehezkel S et al (2011) Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives. Epigenetics 6:63–75PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt BH (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5:73–83PubMedCrossRefGoogle Scholar
  182. Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Höög C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–8PubMedCrossRefGoogle Scholar
  183. Zalenskaya IA, Bradbury EM, Zalensky AO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279:213–8PubMedCrossRefGoogle Scholar
  184. Zalensky AO et al (1995) Well-defined genome architecture in the human sperm nucleus. Chromosoma 103:577–90PubMedCrossRefGoogle Scholar
  185. Zalensky AO, Tomilin NV, Zalenskaya IA, Teplitz RL, Bradbury EM (1997) Telomere–telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells. Exp Cell Res 232:29–41PubMedCrossRefGoogle Scholar
  186. Zhu J, Wang H, Bishop JM, Blackburn EH (1999) Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci U S A 96:3723–8PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK et al (1997) Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci U S A 94:7423–8PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departament de Biologia Cel.lular, Fisiologia i ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  2. 2.Genome Integrity and Instability Group, Institut de Biotecnologia i BiomedicinaUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  3. 3.Grup de Fisiologia Molecular de la SinapsBarcelonaSpain

Personalised recommendations