, Volume 124, Issue 2, pp 221–234 | Cite as

Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes

  • Francisco J. Ruiz-Ruano
  • Ángeles Cuadrado
  • Eugenia E. Montiel
  • Juan Pedro M. Camacho
  • María Dolores López-LeónEmail author
Research Article


Simple sequence repeats (SSRs), also known as microsatellites, are one of the prominent DNA sequences shaping the repeated fraction of eukaryotic genomes. In spite of their profuse use as molecular markers for a variety of genetic and evolutionary studies, their genomic location, distribution, and function are not yet well understood. Here we report the first thorough joint analysis of microsatellite motifs at both genomic and chromosomal levels in animal species, by a combination of 454 sequencing and fluorescent in situ hybridization (FISH) techniques performed on two grasshopper species. The in silico analysis of the 454 reads suggested that microsatellite expansion is not driving size increase of these genomes, as SSR abundance was higher in the species showing the smallest genome. However, the two species showed the same uneven and nonrandom location of SSRs, with clear predominance of dinucleotide motifs and association with several types of repetitive elements, mostly histone gene spacers, ribosomal DNA intergenic spacers (IGS), and transposable elements (TEs). The FISH analysis showed a dispersed chromosome distribution of microsatellite motifs in euchromatic regions, in coincidence with chromosome location patterns previously observed for many mobile elements in these species. However, some SSR motifs were clustered, especially those located in the histone gene cluster.


Microsatellite Locus Histone Gene Microsatellite Motif Grasshopper Species Trinucleotide Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917) and Plan Andaluz de Investigacion (CVI-6649) and was partially performed by FEDER funds. E.E. Montiel was supported by a Junta de Andalucía fellowship.

Integrity of research

All experiments comply with the current Spanish laws.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

412_2014_492_MOESM1_ESM.pdf (914 kb)
ESM 1 (PDF 914 kb)
412_2014_492_MOESM2_ESM.xls (92 kb)
ESM 2 (XLS 91 kb)
412_2014_492_MOESM3_ESM.xls (59 kb)
ESM 3 (XLS 59 kb)
412_2014_492_MOESM4_ESM.xls (145 kb)
ESM 4 (XLS 145 kb)
412_2014_492_MOESM5_ESM.xls (176 kb)
ESM 5 (XLS 176 kb)
412_2014_492_MOESM6_ESM.xls (44 kb)
ESM 6 (XLS 44 kb)
412_2014_492_MOESM7_ESM.xls (160 kb)
ESM 7 (XLS 160 kb)
412_2014_492_MOESM8_ESM.xls (172 kb)
ESM 8 (XLS 172 kb)
412_2014_492_MOESM9_ESM.xls (150 kb)
ESM 9 (XLS 149 kb)


  1. Agustinos AA, Asimakopoulou AK, Papadopoulos NT, Bourtzis K (2011) Cross-amplified microsatellites in the European cherry fly Rhagoletis cerasi: medium polymorphic-highly informative markers. Bull Entomol Res 101:45–52. doi: 10.1017/S0007485310000167 CrossRefGoogle Scholar
  2. Ananiev E, Chamberlin MA, Klaiber J, Svitashev S (2005) Microsatellite megatracts in the maize (Zea mays L.) genome. Genome 48:1061–1069. doi: 10.1139/g05-061 CrossRefPubMedGoogle Scholar
  3. Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544CrossRefPubMedGoogle Scholar
  4. Bakkali M, Camacho JPM (2004) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa: III. Mutation rate of B chromosomes. Heredity 92:428–433. doi: 10.1038/sj.hdy.6800437 CrossRefPubMedGoogle Scholar
  5. Baltimore D (2001) Our genome unveiled. Nature 409:814–816. doi: 10.1038/35057267 CrossRefPubMedGoogle Scholar
  6. Bao Z, Eddy SR (2002) Automated de novo identification of repeats sequence families in sequenced genomes. Genome Res 12:1269–1276. doi: 10.1101/gr.88502 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Basset P, Yannic G, Yang F, O’Brien PCM, Graphodatsky AS, Ferguson-Smith MA, Balmus G, Volobouev VT, Hausser J (2006) Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromosom Res 14:253–262. doi: 10.1007/s10577-006-1041-x CrossRefGoogle Scholar
  8. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. doi: 10.1093/nar/27.2.573 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Blondin L, Badisco L, Pagès C, Foucart A, Risterucci AM, Bazelet CS, Vanen Broeck J, Song H, Ould Ely S, Chapuis MP (2013) Characterization and comparison of microsatellite markers derived from genomic and expressed libraries for the desert locust. J App Entomol 137:673–683. doi: 10.1111/jen.12052 CrossRefGoogle Scholar
  10. Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosomes variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435–439. doi: 10.1038/sj.hdy.6885960 CrossRefPubMedGoogle Scholar
  11. Cabrero J, López-León MD, Teruel M, Camacho JPM (2009) Chromosome mapping of H3 and H4 histone genes clusters in 35 species of acridid grasshoppers. Chromosom Res 17:397–404. doi: 10.1007/s10577-009-9030-5 CrossRefGoogle Scholar
  12. Camacho JPM (2005) B chromosomes. In: Gregory TR (ed) The evolution of the genome. Elsevier, London, pp 223–286CrossRefGoogle Scholar
  13. Camacho JPM, Cabrero J, Viseras E, López-León MD, Navas-Castillo J, Alché JD (1991) G-banding of two species of grasshoppers and its relationship to C, N, and fluorescence banding techniques. Genomes 34:638–643. doi: 10.1139/g91-097 CrossRefGoogle Scholar
  14. Carmona A, Friero E, de Bustos A, Jouve N, Cuadrado A (2013) Cytogenetics diversity of SSR motifs within in between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L. Theor Appl Genet 126:949–961. doi: 10.1007/s00122-012-2028-y CrossRefPubMedGoogle Scholar
  15. Castoe TA, Streicher W, Meik JM et al (2012) Thousands of microsatellite loci from the venomous coralsnake Micrurus fulvius and variability of selected loci across populations and related species. Mol Ecol Resour 12:1105–1113. doi: 10.1111/1755-0998.12000 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Coates BS, Kroemer JA, Summerford DV, Hellmich RL (2011) A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)n microsatellites. Insect Mol Biol 20:15–27. doi: 10.1111/1755-0998.12000 CrossRefPubMedGoogle Scholar
  17. Cuadrado A, Jouve N (2007a) The nonrandom distribution of long cluster of all possible classes of trinucleotide repeats in barley chromosomes. Chromosom Res 15:711–720. doi: 10.1007/s10577-007-1156-8 CrossRefGoogle Scholar
  18. Cuadrado A, Jouve N (2007b) Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes. Cytogenet Genome Res 119:91–99. doi: 10.1159/000109624 CrossRefPubMedGoogle Scholar
  19. Cuadrado A, Jouve N (2010) Chromosome detection of simple sequence repeats (SSRs) using no denaturing FISH (ND-FISH). Chromosoma 119:495–503. doi: 10.1007/s00412-010-0273-x CrossRefGoogle Scholar
  20. Cuadrado A, Jouve N (2011) Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster. BMC Genomics 12:205. doi: 10.1186/1471-2164-12-205 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717. doi: 10.1007/s001220051535 CrossRefGoogle Scholar
  22. Dover GA (1993) Evolution of genetics redundancy for advanced player. Curr Opin Genet Dev 3:902–910. doi: 10.1016/0959-437X(93)90012-E CrossRefPubMedGoogle Scholar
  23. Goldstein DB, Schlötterer C (1999) Microsatellites: evolution and applications. Oxford University Press, OxfordGoogle Scholar
  24. Guo WJ, Ling J, Li P (2009) Consensus features of microsatellite distribution: microsatellite contents are universally correlated with recombination rates and are preferentially depressed by centromeres in multicellular eukaryotic genomes. Genomics 93:323–331. doi: 10.1016/j.ygeno.2008.12.009 CrossRefPubMedGoogle Scholar
  25. Haasl RJ, Payseur BA (2014) Remarkable selective constraints on exonic dinucleotide repeats. Evolution 68:2737–2744. doi: 10.1111/evo.12460 CrossRefPubMedGoogle Scholar
  26. Hancock JM (1996) Simple sequences and the expanding genome. Bioessays 18:421–425. doi: 10.1002/bies.950180512 CrossRefPubMedGoogle Scholar
  27. Hancock JM (2002) Genome size and the accumulation of simple sequence repeats: implications of new data from genome sequencing projects. Genetica 115:93–103. doi: 10.1023/A:1016028332006 CrossRefPubMedGoogle Scholar
  28. Hatanaka T, Henrique-Silva F, Galleti PM Jr (2002) A polymorphic telomeric-like sequence microsatellite in the Neotropical fish Prochilodus. Cytogenet Genome Res 98:308–310. doi: 10.1159/000071054 CrossRefPubMedGoogle Scholar
  29. Hunter ME, Hart KM (2013) Rapid microsatellite marker development using next generation pyrosequencing to inform invasive Burmese phyton—Phyton molurus bivittatus—management. Int J Mol Sci 14:4793–4804. doi: 10.3390/ijms14034793 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Insuan S, Deowanish S, Klinbunga S, Sittipraneed S, Sylvester HA, Wongsiri S (2007) Genetic differentiation of the giant honey bee (Apis dorsata) in Thailand analyzed by mitochondrial genes and microsatellites. Bioch Genet 45:345–361. doi: 10.1007/s10528-007-9079-9 CrossRefGoogle Scholar
  31. Iquebal MA, Sarika AV, Verma N, Rai A, Kumar D (2013) First whole genome based microsatellite DNA marker database of tomato for mapping and variety identification. BMC Plant Biol 13:197. doi: 10.1186/1471-2229-13-197 CrossRefPubMedCentralGoogle Scholar
  32. Jamilena M, Garrido-Ramos M, Ruiz-Rejón C, Rejón MR (1994) Molecular relationship between A and B chromosomes of Crepis capillaries. Heredity 73:527–531. doi: 10.1038/hdy.1994.151 CrossRefGoogle Scholar
  33. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. doi: 10.1159/000084979 CrossRefPubMedGoogle Scholar
  34. Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, Kubat Z, Kovarik J, Jamilena M, Vyskot B (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8(1):e45519. doi: 10.1371/journal.pone.0045519 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Khashnobish A, Hamann A, Osiewacz HD (1999) Modulation of gene expression by (CA)n microsatellites in the filamentous ascomycete Podospora anserine. Appl Microbiol Biot 52:191–195. doi: 10.1007/s002530051508 CrossRefGoogle Scholar
  36. Kubat Z, Hobza R, Vyskot B, Kejnovský E (2008) Microsatellite accumulation on the Y chromosome of Silene latifolia. Genome 51:350–356. doi: 10.1139/G08-024 CrossRefPubMedGoogle Scholar
  37. Langdon T, Seago C, Jones RN, Ougham H, Thomas H, Forster JW, Jenkins G (2000) De novo evolution of satellite DNA on the rye B chromosome. Genetics 154:869–884PubMedCentralPubMedGoogle Scholar
  38. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–3465. doi: 10.1046/j.1365-294X.2002.01643.x CrossRefPubMedGoogle Scholar
  39. Li S, Ying T, Wang M, Tuskan GA (2011) Characterization of microsatellites in coding regions of the Populus genome. Mol Breeding 27:59–66. doi: 10.1007/s11032-010-9413-5 CrossRefGoogle Scholar
  40. Lim S, Notley-McRobb L, Lim M, Carter DA (2004) A comparison of the nature and abundance of microsatellite in 12 fungal genomes. Fungal Genet Biol 41:1025–1036. doi: 10.1016/j.fgb.2004.08.004 CrossRefPubMedGoogle Scholar
  41. Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134:1149–1174PubMedCentralPubMedGoogle Scholar
  42. López-León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL (1993) Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper). Heredity 71:352–362. doi: 10.1038/hdy.1993.149 CrossRefGoogle Scholar
  43. López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM (1994) Possible origin of B chromosome deduced from its DNA composition using double FISH technique. Chromosom Res 2:87–92. doi: 10.1007/BF01553487 CrossRefGoogle Scholar
  44. Malausa T, Gilles A, Méglecz E, Blanquart H, Duthoy S (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644. doi: 10.1111/j.1755-0998.2011.02992.x CrossRefPubMedGoogle Scholar
  45. Manrique-Poyato MI, López-León MD, Gómez R, Perfectti F, Camacho JPM (2013) Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula. PLoS One 8(3):e59041. doi: 10.1371/journal.pone.0059041 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Martin JF, Pech N, Meglécz E, Ferreira S, Costedoat C, Dubut V, Malusa T, Guilles A (2010) Representativeness of microsatellites distribution in genomes as revealed by 454 GS-FLX Titanium pyrosequencing. BMC Genomics 11:560–572. doi: 10.1186/1471-2164-11-560 CrossRefPubMedCentralPubMedGoogle Scholar
  47. McMurray CT (1995) Mechanisms of DNA expansion. Chromosoma 104:2–13PubMedGoogle Scholar
  48. Meglécz E, Nève G, Biffin ED, Gardner MG (2012) Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model eukaryotes species. PLoS One 7(7):e40861. doi: 10.1371/journal.pone.0040861 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Milani D, Cabral-de-Mello DC (2014) Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes. PLoS One 9(5):e97956. doi: 10.1371/journal.pone.0097956 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Montiel EE, Cabrero J, Camacho JPM, López-León MD (2012) Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 140:365–374. doi: 10.1007/s10709-012-9686-1 CrossRefPubMedGoogle Scholar
  51. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200. doi: 10.1038/ng822 CrossRefPubMedGoogle Scholar
  52. Muñoz-Pajares AJ, Martínez Rodriguez L, Teruel M, Cabrero J, Camacho JPM, Perfectti F (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853–863. doi: 10.1534/genetics.110.122713 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Nanda I, Zischler H, Epplen C, Guttenbach M, Schmid M (1991) Chromosome organization of simple repeated DNA sequences used for DNA fingerprinting. Electrophoresis 12:193–203. doi: 10.1002/elps.1150120216 CrossRefPubMedGoogle Scholar
  54. Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next generation sequence reads. Bioinformatics 29:792–793. doi: 10.1093/bioinformatics/btt054 CrossRefPubMedGoogle Scholar
  55. Pannebakker BA, Niehuis O, Hedley A, Gadau J, Shuker DM (2010) The distribution of microsatellites in the Nasonia parasitoid wasp genome. Insect Mol Biol 19:91–98. doi: 10.1111/j.1365-2583.2009.00915.x CrossRefPubMedGoogle Scholar
  56. Pardue ML, Lowenhaupt K, Rich A, Nordheiml A (1987) (dC-dA)n (d(G-dT)n sequences have evolutionary conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6:1781–1789PubMedCentralPubMedGoogle Scholar
  57. Poltronieri J, Marquioni V, Bertollo LAC, Kejnovsky E, Molina WF, Liehr T, Cioffi MB (2013) Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenet Genome Res 142:40–45. doi: 10.1159/000355908 CrossRefPubMedGoogle Scholar
  58. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222. doi: 10.1016/1360-1385(96)86898-1 CrossRefGoogle Scholar
  59. Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H (1997) Low frequency of microsatellites in the avian genome. Genome Res 7:471–482. doi: 10.1101/gr.7.5.471 PubMedGoogle Scholar
  60. Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, Markow TA (2003) Rapid divergence of microsatellite abundance among species of Drosophila. Mol Biol Evol 20(7):1143–1157. doi: 10.1093/molbev/msg137 CrossRefPubMedGoogle Scholar
  61. Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JPM (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126. doi: 10.1159/000324690 CrossRefPubMedGoogle Scholar
  62. Santos J, Serra L, Solé E, Pascual M (2010) FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species. Chromosom Res 18:213–216. doi: 10.1007/s10577-010-9112-4 CrossRefGoogle Scholar
  63. Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmel N (2013) Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One 8(2):54710. doi: 10.1371/journal.pone.0054710 CrossRefGoogle Scholar
  64. Schlötterer C, Pemberton J (1998) The use of microsatellites for genetic analysis of natural populations—a critical review. In: DeSalle R, Schierwater B (eds) Molecular approaches to ecology and evolution. Birkhaäuser, Berlin, pp 71–86CrossRefGoogle Scholar
  65. Schoebel CN, Brodbeck S, Buehler D et al (2013) Lessons learned from microsatellites development for nonmodel organisms using 454 pyrosequencing. J Evol Biol 26:600–611. doi: 10.1111/jeb.12077 CrossRefPubMedGoogle Scholar
  66. Sharma PC, Grover A, Kahl G (2007) Mining of microsatellites in eukaryotic genomes. Trends in Biotech 25:490–498. doi: 10.1016/j.tibtech.2007.07.013 CrossRefGoogle Scholar
  67. Shi J, Huang S, Zhan Z, Yu J, Wang X, Hua W, Liu S, Liu G, Wang H (2014) Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species. DNA Res 21:53–68. doi: 10.1093/dnares/dst040 CrossRefPubMedCentralPubMedGoogle Scholar
  68. Soltis DE, Gitzendanner M, Stull G et al. (2013) The potential of genomics in plant systematics. Taxon 62: 886–898. doi:
  69. Tautz D, Renz C (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12(4):127–4138. doi: 10.1093/nar/12.10.4127 Google Scholar
  70. Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B ancestry revealed by histone genes in the migratory locust. Chromosoma 119:217–225. doi: 10.1007/s00412-009-0251-3 CrossRefPubMedGoogle Scholar
  71. Tóth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes survey and analysis. Genome Res 10:967–981. doi: 10.1101/gr.10.7.967 CrossRefPubMedCentralPubMedGoogle Scholar
  72. Ustinova J, Achmann R, Crèmer S, Mayer F (2006) Long repeats in a huge genome: microsatellites loci in the grasshopper Chorthippus biguttulus. LJ Mol Evol 62:158–167. doi: 10.1007/s00239-005-0022-6 CrossRefGoogle Scholar
  73. Wang X, Fang X, Yang P et al (2014) The locust provides insight into swarm formation and long-distance flight. Nat Commun 5:2957. doi: 10.1038/ncomms3957 PubMedCentralPubMedGoogle Scholar
  74. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellites isolation: a review. Mol Ecol 11:1–16. doi: 10.1046/j.0962-1083.2001.01418.x CrossRefPubMedGoogle Scholar
  75. Zhang DX, Yan LN, Ji YJ, Kang L, Hewitt GM, Huang ZS (2003) Isolation, characterization and cross-species amplification of eight microsatellite DNA loci in the migratory locust (Locusta migratoria). Mol Ecol Notes 3:483–486. doi: 10.1046/j.1471-8286.2003.00485.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francisco J. Ruiz-Ruano
    • 1
  • Ángeles Cuadrado
    • 2
  • Eugenia E. Montiel
    • 1
  • Juan Pedro M. Camacho
    • 1
  • María Dolores López-León
    • 1
    Email author
  1. 1.Departamento de Genética Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Biomedicina y BiotecnologíaUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations