, Volume 123, Issue 5, pp 499–513 | Cite as

Gene density and chromosome territory shape

  • Nitasha Sehgal
  • Andrew J. Fritz
  • Kristen Morris
  • Irianna Torres
  • Zihe Chen
  • Jinhui Xu
  • Ronald Berezney
Research Article


Despite decades of study of chromosome territories (CT) in the interphase nucleus of mammalian cells, our understanding of the global shape and 3-D organization of the individual CT remains very limited. Past microscopic analysis of CT suggested that while many of the CT appear to be very regular ellipsoid-like shapes, there were also those with more irregular shapes. We have undertaken a comprehensive analysis to determine the degree of shape regularity of different CT. To be representative of the whole human genome, 12 different CT (~41 % of the genome) were selected that ranged from the largest (CT 1) to the smallest (CT 21) in size and from the highest (CT 19) to lowest (CT Y) in gene density. Using both visual inspection and algorithms that measure the degree of shape ellipticity and regularity, we demonstrate a strong inverse correlation between the degree of regular CT shape and gene density for those CT that are most gene-rich (19, 17, 11) and gene-poor (18, 13, Y). CT more intermediate in gene density showed a strong negative correlation with shape regularity, but not with ellipticity. An even more striking correlation between gene density and CT shape was determined for the nucleolar-associated NOR-CT. Correspondingly, striking differences in shape between the X active and inactive CT implied that aside from gene density, the overall global level of gene transcription on individual CT is also an important determinant of chromosome territory shape.



This research was supported by grants from the National Institute of Health (GM-072131) to R.B, the National Science Foundation (IIS-0713489, IIS-1115220, and IIS-1422591) to J.X. and R.B., and the University at Buffalo Foundation account # 9351-1157-26 to R.B.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

412_2014_480_MOESM1_ESM.pdf (71 kb)
Supplementary Fig. S1(PDF 71 kb)
412_2014_480_MOESM2_ESM.pdf (117 kb)
Supplementary Fig. S2(PDF 117 kb)
412_2014_480_MOESM3_ESM.pdf (113 kb)
Supplementary Fig. S3(PDF 112 kb)
412_2014_480_MOESM4_ESM.pdf (74 kb)
Supplementary Fig. S4(PDF 73 kb)
412_2014_480_MOESM5_ESM.pdf (75 kb)
Supplementary Fig. S5(PDF 75 kb)


  1. Berezney R (2002) Regulating the mammalian genome: the role of nuclear architecture. Adv Enzym Regul 42:39–52CrossRefGoogle Scholar
  2. Berezney R, Malyavantham KS, Pliss A, Bhattacharya S, Acharya R (2005) Spatio-temporal dynamics of genomic organization and function in the mammalian cell nucleus. Adv Enzym Regul 45:17–26. doi:10.1016/j.advenzreg.2005.02.013 CrossRefGoogle Scholar
  3. Berg Md, Cheong O, Kreveld Mv, Overmars M (2008) Computational geometry: algorithms and applications. 3rd edn. Springer Santa Clara, CA, USAGoogle Scholar
  4. Bickmore WA (2013) The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14:67–84. doi:10.1146/annurev-genom-091212-153515 PubMedCrossRefGoogle Scholar
  5. Bischoff A, Albers J, Kharboush I, Stelzer E, Cremer T, Cremer C (1993) Differences of size and shape of active and inactive X-chromosome domains in human amniotic fluid cell nuclei. Microsc Res Tech 25:68–77. doi:10.1002/jemt.1070250110 PubMedCrossRefGoogle Scholar
  6. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219PubMedCrossRefGoogle Scholar
  7. Caron H et al (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291:1289–1292. doi:10.1126/science.1056794 PubMedCrossRefGoogle Scholar
  8. Cavanagh BL, Walker T, Norazit A, Meedeniya AC (2011) Thymidine analogues for tracking DNA synthesis. Molecules 16:7980–7993. doi:10.3390/molecules16097980 PubMedCrossRefGoogle Scholar
  9. Clowney EJ et al (2012) Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151:724–737. doi:10.1016/j.cell.2012.09.043 PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301PubMedCrossRefGoogle Scholar
  11. Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889. doi:10.1101/cshperspect.a003889 PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cremer T et al (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10:179–212PubMedCrossRefGoogle Scholar
  13. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316PubMedCrossRefGoogle Scholar
  14. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131PubMedCrossRefPubMedCentralGoogle Scholar
  15. Edelmann P, Bornfleth H, Zink D, Cremer T, Cremer C (2001) Morphology and dynamics of chromosome territories in living cells. Biochim Biophys Acta 1551:M29–M39PubMedGoogle Scholar
  16. Eils R et al (1995) Application of confocal laser microscopy and three-dimensional Voronoi diagrams for volume and surface estimates of interphase chromosomes. J Microsc 177:150–161PubMedCrossRefGoogle Scholar
  17. Eils R et al (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135:1427–1440PubMedCrossRefGoogle Scholar
  18. Flicek P et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755. doi:10.1093/Nar/Gkt1196 PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fritz A, Sinha S, Marella N, Berezney R (2013) Alterations in replication timing of cancer-related genes in malignant human breast cancer cells. J Cell Biochem 114:1074–1083. doi:10.1002/jcb.24447 PubMedCrossRefGoogle Scholar
  20. Gierman HJ et al (2007) Domain-wide regulation of gene expression in the human genome. Genome Res 17:1286–1295. doi:10.1101/gr.6276007 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566. doi:10.1016/j.cell.2004.08.011 PubMedCrossRefGoogle Scholar
  22. Goetze S et al (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27:4475–4487. doi:10.1128/MCB.00208-07 PubMedCrossRefPubMedCentralGoogle Scholar
  23. Guelen L et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951. doi:10.1038/nature06947 PubMedCrossRefGoogle Scholar
  24. Khalil A, Grant JL, Caddle LB, Atzema E, Mills KD, Arneodo A (2007) Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosom Res : Int J Mol, Supramol Evol Asp Chromosom Biol 15:899–916CrossRefGoogle Scholar
  25. Kreth G, Finsterle J, von Hase J, Cremer M, Cremer C (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys J 86:2803–2812. doi:10.1016/S0006-3495(04)74333-7 PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kumaran RI, Thakar R, Spector DL (2008) Chromatin dynamics and gene positioning. Cell 132:929–934. doi:10.1016/j.cell.2008.03.004 PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115. doi:10.1038/nrg2041 PubMedCrossRefGoogle Scholar
  28. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234PubMedCrossRefGoogle Scholar
  29. Ma H, Siegel AJ, Berezney R (1999) Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J Cell Biol 146:531–542PubMedCrossRefPubMedCentralGoogle Scholar
  30. Malyavantham KS, Bhattacharya S, Alonso WD, Acharya R, Berezney R (2008) Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma 117:553–567. doi:10.1007/s00412-008-0172-6 PubMedCrossRefPubMedCentralGoogle Scholar
  31. Malyavantham KS, Bhattacharya S, Berezney R (2010) The architecture of functional neighborhoods within the mammalian cell nucleus. Adv Enzym Regul 50:126–134. doi:10.1016/j.advenzreg.2009.10.003 CrossRefGoogle Scholar
  32. Manuelidis L (1985) Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet 71:288–293PubMedCrossRefGoogle Scholar
  33. Marella NV, Bhattacharya S, Mukherjee L, Xu J, Berezney R (2009) Cell type specific chromosome territory organization in the interphase nucleus of normal and cancer cells. J Cell Physiol 221:130–138. doi:10.1002/jcp.21836 PubMedCrossRefGoogle Scholar
  34. Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781. doi:10.1038/445379a PubMedCrossRefGoogle Scholar
  35. Misteli T (2004) Spatial positioning; a new dimension in genome function. Cell 119:153–156PubMedCrossRefGoogle Scholar
  36. Mitchell JA, Fraser P (2008) Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev 22:20–25. doi:10.1101/gad.454008 PubMedCrossRefPubMedCentralGoogle Scholar
  37. Muller I, Boyle S, Singer RH, Bickmore WA, Chubb JR (2010) Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PLoS One 5:e11560PubMedCrossRefPubMedCentralGoogle Scholar
  38. Naughton C, Sproul D, Hamilton C, Gilbert N (2010) Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures. Mol Cell 40:397–409PubMedCrossRefPubMedCentralGoogle Scholar
  39. Osborne CS et al (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071. doi:10.1038/ng1423 PubMedCrossRefGoogle Scholar
  40. Osborne CS et al (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5:e192. doi:10.1371/journal.pbio.0050192 PubMedCrossRefPubMedCentralGoogle Scholar
  41. Parada LA, McQueen PG, Misteli T (2004a) Tissue-specific spatial organization of genomes. Genome Biol 5:R44. doi:10.1186/gb-2004-5-7-r44 PubMedCrossRefPubMedCentralGoogle Scholar
  42. Parada LA, Sotiriou S, Misteli T (2004b) Spatial genome organization. Exp Cell Res 296:64–70. doi:10.1016/j.yexcr.2004.03.013 PubMedCrossRefGoogle Scholar
  43. Quintana-Murci L, Fellous M (2001) The human Y chromosome: the biological role of a "functional wasteland". J Biomed Biotechnol 1:18–24. doi:10.1155/S1110724301000080 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Rosin PL (2005) Computing global shape measures. In: Chen CH, Wang PSP (eds) Handbook of Pattern Recognition and Computer Vision. World Scientific, Singapore pp 177–196Google Scholar
  45. Schardin M, Cremer T, Hager HD, Lang M (1985) Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet 71:281–287PubMedCrossRefGoogle Scholar
  46. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435:637–645. doi:10.1038/nature03574 PubMedCrossRefGoogle Scholar
  47. Stack SM, Brown DB, Dewey WC (1977) Visualization of interphase chromosomes. J Cell Sci 26:281–299PubMedGoogle Scholar
  48. Stein GS et al (2003) Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13:584–592PubMedCrossRefGoogle Scholar
  49. Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190. doi:10.1016/S0006-3495(00)76282-5 PubMedCrossRefPubMedCentralGoogle Scholar
  50. Tajbakhsh J, Luz H, Bornfleth H, Lampel S, Cremer C, Lichter P (2000) Spatial distribution of GC- and AT-rich DNA sequences within human chromosome territories. Exp Cell Res 255:229–237. doi:10.1006/excr.1999.4780 PubMedCrossRefGoogle Scholar
  51. Teller K et al (2011) A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at >/=20 Mb genomic length scales. Nucleus 2:465–477. doi:10.4161/nucl.2.5.17862 PubMedCrossRefGoogle Scholar
  52. Visser AE, Aten JA (1999) Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei. J Cell Sci 112(Pt 19):3353–3360PubMedGoogle Scholar
  53. Volpi EV et al (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576PubMedGoogle Scholar
  54. Walker CL, Cargile CB, Floy KM, Delannoy M, Migeon BR (1991) The Barr body is a looped X chromosome formed by telomere association. Proc Natl Acad Sci U S A 88:6191–6195PubMedCrossRefPubMedCentralGoogle Scholar
  55. Williams RR, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272:163–175. doi:10.1006/excr.2001.5400 PubMedCrossRefGoogle Scholar
  56. Williams A, Spilianakis CG, Flavell RA (2010) Interchromosomal association and gene regulation in trans. Trends Genet : TIG 26:188–197. doi:10.1016/j.tig.2010.01.007 PubMedCrossRefPubMedCentralGoogle Scholar
  57. Zaidi SK et al (2007) Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 7:454–463. doi:10.1038/nrc2149 PubMedCrossRefGoogle Scholar
  58. Zeitz MJ, Mukherjee L, Bhattacharya S, Xu J, Berezney R (2009) A probabilistic model for the arrangement of a subset of human chromosome territories in WI38 human fibroblasts. J Cell Physiol 221:120–129PubMedCrossRefGoogle Scholar
  59. Zorn C, Cremer C, Cremer T, Zimmer J (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Distribution in interphase and metaphase. Exp Cell Res 124:111–119PubMedCrossRefGoogle Scholar
  60. Zunic D, Zunic J (2013) Shape ellipticity based on the first Hu moment invariant. J Inf Process Lett Arch 113:807–810CrossRefGoogle Scholar
  61. Zunic J, Kopanja L, Fieldsend JE (2006) Notes on shape orientation where the standard method does not work. Pattern Recogn 39:856–865CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nitasha Sehgal
    • 1
  • Andrew J. Fritz
    • 1
  • Kristen Morris
    • 1
  • Irianna Torres
    • 1
  • Zihe Chen
    • 2
  • Jinhui Xu
    • 2
  • Ronald Berezney
    • 1
  1. 1.Department of Biological SciencesUniversity at Buffalo, The State University of New YorkBuffaloUSA
  2. 2.Department of Computer SciencesUniversity at Buffalo, The State University of New YorkBuffaloUSA

Personalised recommendations