, Volume 123, Issue 6, pp 515–527 | Cite as

Emerging Roles for hnRNPs in post-transcriptional regulation: what can we learn from flies?

  • Luca Lo Piccolo
  • Davide Corona
  • Maria Cristina OnoratiEmail author


Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a highly conserved family of RNA-binding proteins able to associate with nascent RNAs in order to support their localization, maturation and translation. Research over this last decade has remarked the importance of gene regulatory processes at post-transcriptional level, highlighting the emerging roles of hnRNPs in several essential biological events. Indeed, hnRNPs are key factors in regulating gene expression, thus, having a number of roles in many biological pathways. Moreover, failure of the activities catalysed by hnRNPs affects various biological processes and may underlie several human diseases including cancer, diabetes and neurodegenerative syndromes. In this review, we summarize some of hnRNPs’ roles in the model organism Drosophila melanogaster, particularly focusing on their participation in all aspects of post-transcriptional regulation as well as their conserved role and involvement in the aetiology of human pathologies.


Drosophila hnRNPs Post-transcriptional gene regulation Omega speckles Nucleoplasmic organization Proteinopathies 



We would like to thank Giulia D’Angelo for the critical reading and feedbacks on this manuscript. We would also like to apologize to all our colleagues whose work was not properly cited due to space restriction. L.L.P. is supported by an AIRC fellowship. This work was supported by grants from Fondazione Telethon, AIRC and Progetto Bandiera Epigen to D.F.V.C and by MFAG grant from AIRC to M.C.O.

Conflict of interest

The authors declare no conflict of interest.


  1. Adolph SK, DeLotto R, Nielsen FC, Christiansen J (2009) Embryonic expression of Drosophila IMP in the developing CNS and PNS. Gene Expr Patterns 9(3):138–143. doi: 10.1016/j.gep.2008.12.001 PubMedGoogle Scholar
  2. Allemand E, Batsche E, Muchardt C (2008) Splicing, transcription, and chromatin: a menage a trois. Curr Opin Genet Dev 18(2):145–151. doi: 10.1016/j.gde.2008.01.006 PubMedGoogle Scholar
  3. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611. doi: 10.1016/j.bbrc.2006.10.093 PubMedGoogle Scholar
  4. Auweter SD, Oberstrass FC, Allain FH (2006) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34(17):4943–4959. doi: 10.1093/nar/gkl620 PubMedCentralPubMedGoogle Scholar
  5. Badadani M, Nalbandian A, Watts GD, Vesa J, Kitazawa M, Su H, Tanaja J, Dec E, Wallace DC, Mukherjee J, Caiozzo V, Warman M, Kimonis VE (2010) VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS One 5 (10). doi: 10.1371/journal.pone.0013183
  6. Bannai H, Fukatsu K, Mizutani A, Natsume T, Iemura S, Ikegami T, Inoue T, Mikoshiba K (2004) An RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1) is a component of mRNA granule transported with inositol 1,4,5-trisphosphate receptor type 1 mRNA in neuronal dendrites. J Biol Chem 279(51):53427–53434. doi: 10.1074/jbc.M409732200 PubMedGoogle Scholar
  7. Besse F, Lopez de Quinto S, Marchand V, Trucco A, Ephrussi A (2009) Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23(2):195–207. doi: 10.1101/gad.505709 PubMedCentralPubMedGoogle Scholar
  8. Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171. doi: 10.1146/annurev.genet.39.110304.095804 PubMedGoogle Scholar
  9. Blanchette M, Green RE, MacArthur S, Brooks AN, Brenner SE, Eisen MB, Rio DC (2009) Genome-wide analysis of alternative pre-mRNA splicing and RNA-binding specificities of the Drosophila hnRNP A/B family members. Mol Cell 33(4):438–449. doi: 10.1016/j.molcel.2009.01.022 PubMedCentralPubMedGoogle Scholar
  10. Borah S, Wong AC, Steitz JA (2009) Drosophila hnRNP A1 homologs Hrp36/Hrp38 enhance U2-type versus U12-type splicing to regulate alternative splicing of the prospero twintron. Proc Natl Acad Sci U S A 106(8):2577–2582. doi: 10.1073/pnas.0812826106 PubMedCentralPubMedGoogle Scholar
  11. Boulanger MC, Miranda TB, Clarke S, Di Fruscio M, Suter B, Lasko P, Richard S (2004) Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochem J 379(Pt 2):283–289. doi: 10.1042/BJ20031176 PubMedCentralPubMedGoogle Scholar
  12. Buchenau P, Saumweber H, Arndt-Jovin DJ (1997) The dynamic nuclear redistribution of an hnRNP K-homologous protein during Drosophila embryo development and heat shock. Flexibility of transcription sites in vivo. J Cell Biol 137(2):291–303PubMedCentralPubMedGoogle Scholar
  13. Buratti E, Baralle FE (2009) The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66:1–34. doi: 10.1016/S0065-2660(09)66001-6 PubMedGoogle Scholar
  14. Buratti E, Baralle FE (2010) The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 7(4):420–429PubMedGoogle Scholar
  15. Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280(45):37572–37584. doi: 10.1074/jbc.M505557200 PubMedGoogle Scholar
  16. Busch A, Hertel KJ (2012) Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA 3(1):1–12. doi: 10.1002/wrna.100 PubMedCentralPubMedGoogle Scholar
  17. Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252(5009):1167–1171PubMedGoogle Scholar
  18. Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI (2006) The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta 1765(2):85–100. doi: 10.1016/j.bbcan.2005.10.002 PubMedGoogle Scholar
  19. Chang KY, Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform. Febs J 272(9):2109–2117. doi: 10.1111/j.1742-4658.2005.04652.x PubMedGoogle Scholar
  20. Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1's multifunctional regulatory roles. RNA 16(8):1449–1462. doi: 10.1261/rna.2254110 PubMedCentralPubMedGoogle Scholar
  21. Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6(4):211–220. doi: 10.1038/nrneurol.2010.18 PubMedCentralPubMedGoogle Scholar
  22. Davis MB, Sun W, Standiford DM (2002) Lineage-specific expression of polypyrimidine tract binding protein (PTB) in Drosophila embryos. Mech Dev 111(1–2):143–147PubMedGoogle Scholar
  23. Dery KJ, Gaur S, Gencheva M, Yen Y, Shively JE, Gaur RK (2011) Mechanistic control of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1, and hnRNP M. J Biol Chem 286(18):16039–16051. doi: 10.1074/jbc.M110.204057 PubMedCentralPubMedGoogle Scholar
  24. Draper I, Tabaka ME, Jackson FR, Salomon RN, Kopin AS (2009) The evolutionarily conserved RNA binding protein SMOOTH is essential for maintaining normal muscle function. Fly (Austin) 3(4):235–246Google Scholar
  25. Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3(3):195–205. doi: 10.1038/nrm760 PubMedGoogle Scholar
  26. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321. doi: 10.1146/ PubMedGoogle Scholar
  27. Forman MS, Trojanowski JQ, Lee VM (2007) TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol 17(5):548–555. doi: 10.1016/j.conb.2007.08.005 PubMedCentralPubMedGoogle Scholar
  28. Forrest KM, Clark IE, Jain RA, Gavis ER (2004) Temporal complexity within a translational control element in the nanos mRNA. Development 131(23):5849–5857. doi: 10.1242/dev.01460 PubMedGoogle Scholar
  29. Gagne JP, Hunter JM, Labrecque B, Chabot B, Poirier GG (2003) A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochem J 371(Pt 2):331–340. doi: 10.1042/BJ20021675 PubMedCentralPubMedGoogle Scholar
  30. Gao R, Yu Y, Inoue A, Widodo N, Kaul SC, Wadhwa R (2013) Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement and angiogenesis. J Biol Chem. doi: 10.1074/jbc.M113.466136 Google Scholar
  31. Gilbert LI (2008) Drosophila is an inclusive model for human diseases, growth and development. Mol Cell Endocrinol 293(1–2):25–31. doi: 10.1016/j.mce.2008.02.009 PubMedGoogle Scholar
  32. Godena VK, Romano G, Romano M, Appocher C, Klima R, Buratti E, Baralle FE, Feiguin F (2011) TDP-43 regulates Drosophila neuromuscular junctions growth by modulating Futsch/MAP1B levels and synaptic microtubules organization. PLoS One 6(3):e17808. doi: 10.1371/journal.pone.0017808 PubMedCentralPubMedGoogle Scholar
  33. Goodrich JS, Clouse KN, Schupbach T (2004) Hrb27C, Sqd and Otu cooperatively regulate gurken RNA localization and mediate nurse cell chromosome dispersion in Drosophila oogenesis. Development 131(9):1949–1958. doi: 10.1242/dev.01078 PubMedGoogle Scholar
  34. Gunkel N, Yano T, Markussen FH, Olsen LC, Ephrussi A (1998) Localization-dependent translation requires a functional interaction between the 5′ and 3′ ends of oskar mRNA. Genes Dev 12(11):1652–1664PubMedCentralPubMedGoogle Scholar
  35. Habelhah H, Shah K, Huang L, Ostareck-Lederer A, Burlingame AL, Shokat KM, Hentze MW, Ronai Z (2001) ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 3(3):325–330. doi: 10.1038/35060131 PubMedGoogle Scholar
  36. Han SP, Tang YH, Smith R (2010) Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 430(3):379–392. doi: 10.1042/BJ20100396 PubMedGoogle Scholar
  37. Hanson KA, Kim SH, Tibbetts RS (2012) RNA-binding proteins in neurodegenerative disease: TDP-43 and beyond. Wiley Interdiscip Rev RNA 3(2):265–285. doi: 10.1002/wrna.111 PubMedCentralPubMedGoogle Scholar
  38. Hartmann B, Castelo R, Minana B, Peden E, Blanchette M, Rio DC, Singh R, Valcarcel J (2011) Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA 17(3):453–468. doi: 10.1261/rna.2460411 PubMedCentralPubMedGoogle Scholar
  39. Haynes SR, Johnson D, Raychaudhuri G, Beyer AL (1991) The Drosophila Hrb87F gene encodes a new member of the A and B hnRNP protein group. Nucleic Acids Res 19(1):25–31PubMedCentralPubMedGoogle Scholar
  40. Hazelett DJ, Chang JC, Lakeland DL, Morton DB (2012) Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda) 2(7):789–802. doi: 10.1534/g3.112.002998 PubMedCentralGoogle Scholar
  41. He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66(7):1239–1256. doi: 10.1007/s00018-008-8532-1 PubMedGoogle Scholar
  42. Hovemann BT, Reim I, Werner S, Katz S, Saumweber H (2000) The protein Hrb57A of Drosophila melanogaster closely related to hnRNP K from vertebrates is present at sites active in transcription and coprecipitates with four RNA-binding proteins. Gene 245(1):127–137PubMedGoogle Scholar
  43. Huynh JR, Munro TP, Smith-Litiere K, Lepesant JA, St Johnston D (2004) The Drosophila hnRNPA/B homolog, Hrp48, is specifically required for a distinct step in osk mRNA localization. Dev Cell 6(5):625–635PubMedGoogle Scholar
  44. Ji Y, Tulin AV (2009) Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing. Nucleic Acids Res 37(11):3501–3513. doi: 10.1093/nar/gkp218 PubMedCentralPubMedGoogle Scholar
  45. Ji Y, Tulin AV (2012) Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nat Commun 3:760. doi: 10.1038/ncomms1759 PubMedCentralPubMedGoogle Scholar
  46. Ji Y, Tulin AV (2013) Post-transcriptional regulation by poly(ADP-ribosyl)ation of the RNA-binding proteins. Int J Mol Sci 14(8):16168–16183. doi: 10.3390/ijms140816168 PubMedCentralPubMedGoogle Scholar
  47. Jin P, Zarnescu DC, Zhang F, Pearson CE, Lucchesi JC, Moses K, Warren ST (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39(5):739–747PubMedGoogle Scholar
  48. Jolly C, Lakhotia SC (2006) Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 34(19):5508–5514. doi: 10.1093/nar/gkl711 PubMedCentralPubMedGoogle Scholar
  49. Kalifa Y, Armenti ST, Gavis ER (2009) Glorund interactions in the regulation of gurken and oskar mRNAs. Dev Biol 326(1):68–74. doi: 10.1016/j.ydbio.2008.10.032 PubMedCentralPubMedGoogle Scholar
  50. Kalifa Y, Huang T, Rosen LN, Chatterjee S, Gavis ER (2006) Glorund, a Drosophila hnRNP F/H homolog, is an ovarian repressor of nanos translation. Dev Cell 10(3):291–301. doi: 10.1016/j.devcel.2006.01.001 PubMedGoogle Scholar
  51. Kelley RL (1993) Initial organization of the Drosophila dorsoventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev 7(6):948–960PubMedGoogle Scholar
  52. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467–473. doi: 10.1038/nature11922 PubMedCentralPubMedGoogle Scholar
  53. Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81(3):403–412PubMedGoogle Scholar
  54. Kozlova N, Braga J, Lundgren J, Rino J, Young P, Carmo-Fonseca M, Visa N (2006) Studies on the role of NonA in mRNA biogenesis. Exp Cell Res 312(13):2619–2630. doi: 10.1016/j.yexcr.2006.04.013 PubMedGoogle Scholar
  55. Krecic AM, Swanson MS (1999) hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11(3):363–371. doi: 10.1016/S0955-0674(99)80051-9 PubMedGoogle Scholar
  56. Lakhotia SC (2011) Forty years of the 93D puff of Drosophila melanogaster. J Biosci 36(3):399–423PubMedGoogle Scholar
  57. Lakhotia SC, Mallik M, Singh AK, Ray M (2012) The large noncoding hsromega-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 121(1):49–70. doi: 10.1007/s00412-011-0341-x PubMedGoogle Scholar
  58. Lakhotia SC, Rajendra TK, Prasanth KV (2001) Developmental regulation and complex organization of the promoter of the non-coding hsr(omega) gene of Drosophila melanogaster. J Biosci 26(1):25–38PubMedGoogle Scholar
  59. Lakhotia SC, Ray P, Rajendra TK, Prasanth K.V (1999) The non-coding transcripts of hsr-omega gene in Drosophila: do they regulate trafficking and availability of nuclear RNA-processing factors? . Curr Sci:553--563Google Scholar
  60. Layalle S, Coessens E, Ghysen A, Dambly-Chaudiere C (2005) Smooth, a hnRNP encoding gene, controls axonal navigation in Drosophila. Genes Cells 10(2):119–125. doi: 10.1111/j.1365-2443.2005.00822.x PubMedGoogle Scholar
  61. Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13(1):38–50. doi: 10.1038/nrn3121 Google Scholar
  62. Li T, Evdokimov E, Shen RF, Chao CC, Tekle E, Wang T, Stadtman ER, Yang DC, Chock PB (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc Natl Acad Sci U S A 101(23):8551–8556. doi: 10.1073/pnas.0402889101 PubMedCentralPubMedGoogle Scholar
  63. Li Y, Ray P, Rao EJ, Shi C, Guo W, Chen X, Woodruff EA 3rd, Fushimi K, Wu JY (2010) A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A 107(7):3169–3174. doi: 10.1073/pnas.0913602107 PubMedCentralPubMedGoogle Scholar
  64. Llamusi B, Bargiela A, Fernandez-Costa JM, Garcia-Lopez A, Klima R, Feiguin F, Artero R (2013) Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis Model Mech 6(1):184–196. doi: 10.1242/dmm.009563 PubMedCentralPubMedGoogle Scholar
  65. Lo CS, Chang SY, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2012) Heterogeneous nuclear ribonucleoprotein F suppresses angiotensinogen gene expression and attenuates hypertension and kidney injury in diabetic mice. Diabetes 61(10):2597–2608. doi: 10.2337/db11-1349 PubMedCentralPubMedGoogle Scholar
  66. Mackay TF (1985) Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111(2):351–374PubMedCentralPubMedGoogle Scholar
  67. Mallik M, Lakhotia SC (2010) Improved activities of CREB binding protein, heterogeneous nuclear ribonucleoproteins and proteasome following downregulation of noncoding hsromega transcripts help suppress poly(Q) pathogenesis in fly models. Genetics 184(4):927–945. doi: 10.1534/genetics.109.113696 PubMedCentralPubMedGoogle Scholar
  68. Mallik M, Lakhotia SC (2011) Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsromega gene in Drosophila. J Biosci 36(2):265–280PubMedGoogle Scholar
  69. Markovtsov V, Nikolic JM, Goldman JA, Turck CW, Chou MY, Black DL (2000) Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 20(20):7463–7479PubMedCentralPubMedGoogle Scholar
  70. Martin JH (2005) The corticospinal system: from development to motor control. Neuroscientist 11(2):161–173. doi: 10.1177/1073858404270843 PubMedGoogle Scholar
  71. Matunis EL, Matunis MJ, Dreyfuss G (1992a) Characterization of the major hnRNP proteins from Drosophila melanogaster. J Cell Biol 116(2):257–269PubMedGoogle Scholar
  72. Matunis MJ, Matunis EL, Dreyfuss G (1992b) Isolation of hnRNP complexes from Drosophila melanogaster. J Cell Biol 116(2):245–255PubMedGoogle Scholar
  73. McDermott SM, Meignin C, Rappsilber J, Davis I (2012) Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification. Biol Open 1(5):488–497. doi: 10.1242/bio.2012885 PubMedCentralPubMedGoogle Scholar
  74. Najbauer J, Johnson BA, Young AL, Aswad DW (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 268(14):10501–10509PubMedGoogle Scholar
  75. Neuman-Silberberg FS, Schupbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75(1):165–174PubMedGoogle Scholar
  76. Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM (2007) TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64(10):1388–1394. doi: 10.1001/archneur.64.10.1388 PubMedGoogle Scholar
  77. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi: 10.1126/science.1134108 PubMedGoogle Scholar
  78. Nichols RC, Wang XW, Tang J, Hamilton BJ, High FA, Herschman HR, Rigby WF (2000) The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res 256(2):522–532. doi: 10.1006/excr.2000.4827 PubMedGoogle Scholar
  79. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463. doi: 10.1038/nature08909 PubMedCentralPubMedGoogle Scholar
  80. Norris AD, Calarco JA (2012) Emerging roles of alternative pre-mRNA splicing regulation in neuronal development and function. Front Neurosci 6:122. doi: 10.3389/fnins.2012.00122 PubMedCentralPubMedGoogle Scholar
  81. Norvell A, Debec A, Finch D, Gibson L, Thoma B (2005) Squid is required for efficient posterior localization of oskar mRNA during Drosophila oogenesis. Dev Genes Evol 215(7):340–349. doi: 10.1007/s00427-005-0480-2 PubMedGoogle Scholar
  82. Olson S, Blanchette M, Park J, Savva Y, Yeo GW, Yeakley JM, Rio DC, Graveley BR (2007) A regulator of Dscam mutually exclusive splicing fidelity. Nat Struct Mol Biol 14(12):1134–1140PubMedCentralPubMedGoogle Scholar
  83. Onorati MC, Lazzaro S, Mallik M, Ingrassia AM, Carreca AP, Singh AK, Chaturvedi DP, Lakhotia SC, Corona DF (2011) The ISWI chromatin remodeler organizes the hsromega ncRNA-containing omega speckle nuclear compartments. PLoS Genet 7(5):e1002096. doi: 10.1371/journal.pgen.1002096 PubMedCentralPubMedGoogle Scholar
  84. Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69(6):3584–3596PubMedCentralPubMedGoogle Scholar
  85. Paik D, Jang YG, Lee YE, Lee YN, Yamamoto R, Gee HY, Yoo S, Bae E, Min KJ, Tatar M, Park JJ (2012) Misexpression screen delineates novel genes controlling Drosophila lifespan. Mech Ageing Dev 133(5):234–245. doi: 10.1016/j.mad.2012.02.001 PubMedCentralPubMedGoogle Scholar
  86. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63(2):411–436. doi: 10.1124/pr.110.003293 PubMedCentralPubMedGoogle Scholar
  87. Patry C, Bouchard L, Labrecque P, Gendron D, Lemieux B, Toutant J, Lapointe E, Wellinger R, Chabot B (2003) Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 63(22):7679–7688PubMedGoogle Scholar
  88. Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, Pimpinelli S (2009) Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 5(10):e1000670. doi: 10.1371/journal.pgen.1000670 PubMedCentralPubMedGoogle Scholar
  89. Pinnola A, Naumova N, Shah M, Tulin AV (2007) Nucleosomal core histones mediate dynamic regulation of poly(ADP-ribose) polymerase 1 protein binding to chromatin and induction of its enzymatic activity. J Biol Chem 282(44):32511–32519. doi: 10.1074/jbc.M705989200 PubMedGoogle Scholar
  90. Piper M, Holt C (2004) RNA translation in axons. Annu Rev Cell Dev Biol 20:505–523. doi: 10.1146/annurev.cellbio.20.010403.111746 PubMedCentralPubMedGoogle Scholar
  91. Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC (2000) Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 113(Pt 19):3485–3497PubMedGoogle Scholar
  92. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154(4):727–736. doi: 10.1016/j.cell.2013.07.038 PubMedGoogle Scholar
  93. Reim I, Mattow J, Saumweber H (1999) The RRM protein NonA from Drosophila forms a complex with the RRM proteins Hrb87F and S5 and the Zn finger protein PEP on hnRNA. Exp Cell Res 253(2):573–586. doi: 10.1006/excr.1999.4647 PubMedGoogle Scholar
  94. Ritson GP, Custer SK, Freibaum BD, Guinto JB, Geffel D, Moore J, Tang W, Winton MJ, Neumann M, Trojanowski JQ, Lee VM, Forman MS, Taylor JP (2010) TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 30(22):7729–7739. doi: 10.1523/JNEUROSCI.5894-09.2010 PubMedCentralPubMedGoogle Scholar
  95. Sengupta S, Lakhotia SC (2006) Altered expressions of the noncoding hsromega gene enhances poly-Q-induced neurotoxicity in Drosophila. RNA Biol 3(1):28–35PubMedGoogle Scholar
  96. Shulman JM, Shulman LM, Weiner WJ, Feany MB (2003) From fruit fly to bedside: translating lessons from Drosophila models of neurodegenerative disease. Curr Opin Neurol 16(4):443–449. doi: 10.1097/01.wco.0000084220.82329.60 PubMedGoogle Scholar
  97. Singh AK, Lakhotia SC (2012) The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J Biosci 37(4):659–678PubMedGoogle Scholar
  98. Singh OP (2001) Functional diversity of hnRNP proteins. Indian J Biochem Biophys 38(3):129–134PubMedGoogle Scholar
  99. Sinsimer KS, Jain RA, Chatterjee S, Gavis ER (2011) A late phase of germ plasm accumulation during Drosophila oogenesis requires lost and rumpelstiltskin. Development 138(16):3431–3440. doi: 10.1242/dev.065029 PubMedCentralPubMedGoogle Scholar
  100. Smibert CA, Lie YS, Shillinglaw W, Henzel WJ, Macdonald PM (1999) Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5(12):1535–1547PubMedCentralPubMedGoogle Scholar
  101. Sofola OA, Jin P, Qin Y, Duan R, Liu H, de Haro M, Nelson DL, Botas J (2007) RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55(4):565–571. doi: 10.1016/j.neuron.2007.07.021 PubMedCentralPubMedGoogle Scholar
  102. Stanewsky R, Fry TA, Reim I, Saumweber H, Hall JC (1996) Bioassaying putative RNA-binding motifs in a protein encoded by a gene that influences courtship and visually mediated behavior in Drosophila: in vitro mutagenesis of nonA. Genetics 143(1):259–275PubMedCentralPubMedGoogle Scholar
  103. Strong MJ (2010) The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 288(1–2):1–12. doi: 10.1016/j.jns.2009.09.029 PubMedGoogle Scholar
  104. Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Perreault S, Topisirovic I, Sonenberg N (2013) Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q. PLoS Biol 11(5):e1001564. doi: 10.1371/journal.pbio.1001564 PubMedCentralPubMedGoogle Scholar
  105. Swaminathan A, Gajan A, Pile LA (2012) Epigenetic regulation of transcription in Drosophila. Front Biosci 17:909–937Google Scholar
  106. Tan H, Qurashi A, Poidevin M, Nelson DL, Li H, Jin P (2012) Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. Hum Mol Genet 21(1):57–65. doi: 10.1093/hmg/ddr437 PubMedCentralPubMedGoogle Scholar
  107. Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, Suzukake M, Hosokawa M, Yoshida M, Hatsuta H, Takao M, Saito Y, Murayama S, Akiyama H, Hasegawa M, Mann DM, Tamaoka A (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135(Pt 11):3380–3391. doi: 10.1093/brain/aws230 PubMedGoogle Scholar
  108. Tyagi A, Ryme J, Brodin D, Ostlund Farrants AK, Visa N (2009) SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet 5(5):e1000470. doi: 10.1371/journal.pgen.1000470 PubMedCentralPubMedGoogle Scholar
  109. Wang JW, Brent JR, Tomlinson A, Shneider NA, McCabe BD (2011) The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J Clin Invest 121(10):4118–4126. doi: 10.1172/JCI57883 PubMedCentralPubMedGoogle Scholar
  110. Yano T, Lopez de Quinto S, Matsui Y, Shevchenko A, Ephrussi A (2004) Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev Cell 6(5):637–648PubMedGoogle Scholar
  111. Zinszner H, Immanuel D, Yin Y, Liang FX, Ron D (1997) A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited. Oncogene 14(4):451–461. doi: 10.1038/sj.onc.1200854 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luca Lo Piccolo
    • 1
  • Davide Corona
    • 1
  • Maria Cristina Onorati
    • 1
    Email author
  1. 1.Dipartimento STEBICEFIstituto Telethon Dulbecco c/o Universita’ degli Studi di PalermoPalermoItaly

Personalised recommendations