Chromosoma

, Volume 123, Issue 4, pp 373–383 | Cite as

Sex chromosome polymorphism in guppies

  • Indrajit Nanda
  • Susanne Schories
  • Namita Tripathi
  • Christine Dreyer
  • Thomas Haaf
  • Michael Schmid
  • Manfred Schartl
Research Article

Abstract

Sex chromosomes differ from autosomes by dissimilar gene content and, at a more advanced stage of their evolution, also in structure and size. This is driven by the divergence of the Y or W from their counterparts, X and Z, due to reduced recombination and the resulting degeneration as well as the accumulation of sex-specific and sexually antagonistic genes. A paradigmatic example for Y-chromosome evolution is found in guppies. In these fishes, conflicting data exist for a morphological and molecular differentiation of sex chromosomes. Using molecular probes and the previously established linkage map, we performed a cytogenetic analysis of sex chromosomes. We show that the Y chromosome has a very large pseudoautosomal region, which is followed by a heterochromatin block (HCY) separating the subtelomeric male-specific region from the rest of the chromosome. Interestingly, the size of the HCY is highly variable between individuals from different population. The largest HCY was found in one population of Poecilia wingei, making the Y almost double the size of the X and the largest chromosome of the complement. Comparative analysis revealed that the Y chromosomes of different guppy species are homologous and share the same structure and organization. The observed size differences are explained by an expansion of the HCY, which is due to increased amounts of repetitive DNA. In one population, we observed also a polymorphism of the X chromosome. We suggest that sex chromosome-linked color patterns and other sexually selected genes are important for maintaining the observed structural polymorphism of sex chromosomes.

Keywords

Heterochromatin Sex chromosome Evolution Male-specific region 

Notes

Acknowledgments

We thank Georg Schneider, Hugo Schwind, and Petra Weber for expert fish keeping, Monika Niklaus-Ruiz for the support in the preparation of this manuscript, and Dr. Indar Ramnarine (St. Augustine, Trinidad) for the help in obtaining a research and collection permit (AMJ/pj 18/02/2008). We are grateful to Prof. Dr. Johannes-Horst Schröder (Mariastein), Fred N Poeser (Amsterdam), and Felix Breden for the founder fish and Emil Linke (Euerbach) for the XX males from the Ca population of P. wingei. This work was supported by Deutsche Forschungsgemeinschaft.

Supplementary material

412_2014_455_Fig8_ESM.jpg (39 kb)
Supplementary Figure 1

Comparison of the length of sex chromosomes and the largest autosome in different guppies. Measurements of X, Y, and the largest autosome were made from the same metaphases. Note that the Y chromosome is the largest chromosome in the karyotype of the EnCCFR and LP strains of P. wingei. FISH Probes; EnCCFR, LP, RS: BAC 36H23(green)-BAC 05C08 (red); Gr: BAC 34K02(green)-BAC 04G05(red) (JPEG 39.2 kb)

412_2014_455_MOESM1_ESM.tif (20.3 mb)
High Resolution Image (TIFF 20.2 MB)
412_2014_455_MOESM2_ESM.doc (36 kb)
Suppl. Table 1(DOC 35.5 kb)

References

  1. Alexander HJ, Breden F (2004) Sexual isolation and extreme morphological divergence in the Cumana guppy: a possible case of incipient speciation. J Evol Biol 17:1238–1254PubMedCrossRefGoogle Scholar
  2. Baker WK (1958) Crossing over in heterochromatin. Am Nat 92:59–60CrossRefGoogle Scholar
  3. Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303–2308PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cnaani A (2013) The tilapias’ chromosomes influencing sex determination. Cytogenet Genome Res 141:195–205PubMedCrossRefGoogle Scholar
  5. Dzwillo M (1959) Genetische Untersuchungen an domestizierten Stämmen von Lebistes reticulatus (Peters). Mitt Zool Inst Mus Hamburg 5:143–186Google Scholar
  6. Haskins CP, Young P, Hewitt RE, Haskins EF (1970) Stabilized heterozygosis of supergenes mediating certain Y-linked colour patterns in populations of Lebistes reticulatus. Heredity 25: 575–589Google Scholar
  7. Hornaday K, Alexander S, Felix B (1994) Absence of repetitive DNA sequences associated with sex chromosomes in natural populations of the Trinidad guppy (Poecilia reticulata). J Mol Evol 39:431–433CrossRefGoogle Scholar
  8. Kallman KD (1975) The platyfish Xiphophorus maculatus. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 81–132CrossRefGoogle Scholar
  9. Kirpichnikov VA (1981) Genetic basis of fish selection. Springer, New YorkCrossRefGoogle Scholar
  10. Kondo M, Nanda I, Hornung U, Schmid M, Schartl M (2004) Evolutionary origin of the medaka Y chromosome. Curr Biol 14:1664–1669PubMedCrossRefGoogle Scholar
  11. Kondo M, Nanda I, Schmid M, Schartl M (2009) Sex determination and sex chromosome evolution: insights from medaka. Sex Dev 3:88–98PubMedCrossRefGoogle Scholar
  12. Lin YW, Thi DA, Kuo PL, Hsu CC, Huang BD, Yu YH, Vogt PH, Krause W, Ferlin A, Foresta C, Bienvenu T, Schempp W, Yen PH (2005) Polymorphisms associated with the DAZ genes on the human Y chromosome. Genomics 86:431–438PubMedCrossRefGoogle Scholar
  13. Lindholm A, Breden F (2002) Sex chromosomes and sexual selection in poeciliid fishes. Am Nat 160(Suppl 6):S214–S224PubMedCrossRefGoogle Scholar
  14. Lindholm AK, Brooks R, Breden F (2004) Extreme polymorphism in a Y-linked sexually selected trait. Heredity 92:156–162PubMedCrossRefGoogle Scholar
  15. Lodi E (1978) Chromosome complement of the guppy, Poecilia reticulata Peters (Pisces, Osteichthyes). Caryologia 31:475–477CrossRefGoogle Scholar
  16. Magurran AE (2005) Evolutionary ecology—the Trinidadian Guppy. Oxford University Press, New YorkGoogle Scholar
  17. Nanda I, Feichtinger W, Schmid M, Schröder JH, Zischler H, Epplen JT (1990) Simple repetitive sequences are associated with differentiation of the sex-chromosomes in the guppy fish. J Mol Evol 30:456–462CrossRefGoogle Scholar
  18. Nova P, Reutter BA, Rabova M, Zima J (2002) Sex-chromosome heterochromatin variation in the wood mouse, Apodemus sylvaticus. Cytogenet Genome Res 96:186–190PubMedCrossRefGoogle Scholar
  19. Phillip RB, Konkol NR, Reed KM, Stein JD (2001) Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo, and Salvelinus (Salmonidae). Genetica 111:119–123PubMedCrossRefGoogle Scholar
  20. Poeser FN, Kempkes M, Isbrücker IJH (2005) Description of Poecilia (Acanthophacelus) wingein. sp. from the Paría Peninsula, Venezuela, including notes on Acanthophacelus Eigenmann, 1907 and other subgenera of Poecilia Bloch and Schneider, 1801 (Teleostei, Cyprinodontiformes, Poeciliidae). Contrib Zool 74:97–115Google Scholar
  21. Repping S, Skaletsky H, Brown L, van Daalen SK, Korver CM, Pyntikova T, Kuroda-Kawaguchi T, de Vries JW, Oates RD, Silber S, van der Veen F, Page DC, Rozen S (2003) Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet 35:247–251PubMedCrossRefGoogle Scholar
  22. Rodionova MI, Nikitin SV, Borodin PM (1996) Synaptonemal complex analysis of interspecific hybrids of Poecilia (Teleostei, Poecilidae). Braz J Genet 19:231–235Google Scholar
  23. Schäfer R, Zischler H, Birsner U, Becker A, Epplen JT (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9:369–374PubMedCrossRefGoogle Scholar
  24. Schaller F, Fernandes AM, Hodler C, Munch C, Pasantes JJ, Rietschel W, Schempp W (2010) Y chromosomal variation tracks the evolution of mating systems in chimpanzee and bonobo. PLoS ONE 5:e12482PubMedCentralPubMedCrossRefGoogle Scholar
  25. Schartl M (2004) Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev 14:634–641PubMedCrossRefGoogle Scholar
  26. Schmid M, Olert J, Klett C (1979) Chromosome-banding in amphibia. 3. Sex-chromosomes in Triturus. Chromosoma 71:29–55Google Scholar
  27. Schmid M, Steinlein C, Bogart JP, Feichtinger W, Haaf T, Nanda I, del Pino EM, Duellman WE, Hedges SB (2012) The hemiphractid frogs. Phylogeny, embryology, life history, and cytogenetics. Cytogenet Genome Res 138:69–384PubMedCrossRefGoogle Scholar
  28. Schmidt J (1919) Racial investigations III. Experiments with Lebistes reticulatus (Peters). C R Trav Lab Carlsberg 14:1–8Google Scholar
  29. Schories S, Meyer MK, Schartl M (2009) Description of Poecilia (Acanthophacelus) obscura n. sp., (Teleostei: Poeciliidae), a new guppy species from western Trinidad, with remarks on P. wingei and the status of the "“Endler's guppy". Zootaxa:35–50Google Scholar
  30. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  31. Takehana Y, Naruse K, Asada Y, Matsuda Y, Shin IT, Kohara Y, Fujiyama A, Hamaguchi S, Sakaizumi M (2012) Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosome Res 20:71–81PubMedCrossRefGoogle Scholar
  32. Traut W, Winking H (2001) Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res 9:659–672PubMedCrossRefGoogle Scholar
  33. Tripathi N, Hoffmann M, Weigel D, Dreyer C (2009a) Linkage analysis reveals the independent origin of Poeciliid sex chromosomes and a case of atypical sex inheritance in the guppy (Poecilia reticulata). Genetics 182:365–374PubMedCentralPubMedCrossRefGoogle Scholar
  34. Tripathi N, Hoffmann M, Willing EM, Lanz C, Weigel D, Dreyer C (2009b) Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation. Proc R Soc B 276:2195–2208PubMedCentralPubMedCrossRefGoogle Scholar
  35. Urton JR, McCann SR, Peichel CL (2011) Karyotype differentiation between two stickleback species (Gasterosteidae). Cytogenet Genome Res 135:150–159PubMedCentralPubMedCrossRefGoogle Scholar
  36. van Oosterhout C, Trigg RE, Carvalho GR, Magurran AE, Hauser L, Shaw PW (2003) Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. J Evol Biol 16:273–281PubMedCrossRefGoogle Scholar
  37. Volff JN, Nanda I, Schmid M, Schartl M (2007) Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Dev 1:85–99PubMedCrossRefGoogle Scholar
  38. Winge Ö (1922) One-sided masculine and sex-linked inheritance in Lebistes reticulatus. J Genet 12:145–162Google Scholar
  39. Winge Ö (1923) Crossing-over between the X and the Y-chromosome in Lebistes. J Genet 13:201–217Google Scholar
  40. Winge Ö (1927) The location of eighteen genes in Lebistes reticulatus. Genetics 18:1–43Google Scholar
  41. Winge Ö (1934) The experimental alternation of sex chromosomes into autosomes and vice versa, as illustrated by Lebistes. Compt rend Lab Carlsberg, sér Physiol 21:1–49Google Scholar
  42. Winge Ö, Ditlevsen E (1938) A lethal gene in the Y-chromosome of Lebistes. CR Trav Lab Carlsberg 22:203–210Google Scholar
  43. Winge Ö, Ditlevsen E (1947) Colour inheritance and sex determination in Lebistes. Heredity 1:65–83Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Indrajit Nanda
    • 1
  • Susanne Schories
    • 2
  • Namita Tripathi
    • 3
  • Christine Dreyer
    • 3
  • Thomas Haaf
    • 1
  • Michael Schmid
    • 1
  • Manfred Schartl
    • 2
    • 4
  1. 1.BiocenterInstitute for Human GeneticsWürzburgGermany
  2. 2.BiocenterPhysiological ChemistryWürzburgGermany
  3. 3.Max Planck Institute for Developmental BiologyTübingenGermany
  4. 4.Comprehensive Cancer CenterUniversity Clinic WürzburgWürzburgGermany

Personalised recommendations