Advertisement

Chromosoma

, Volume 122, Issue 6, pp 517–533 | Cite as

The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility

  • Veit Schubert
  • Inna Lermontova
  • Ingo Schubert
Research Article

Abstract

In plants as in other eukaryotes, the structural maintenance of chromosome (SMC) protein complexes cohesin, condensin and SMC5/6 are essential for sister chromatid cohesion, chromosome condensation, DNA repair and recombination. The presence of paralogous genes for various components of the different SMC complexes suggests the diversification of their biological functions during the evolution of higher plants. In Arabidopsis thaliana, we identified two candidate genes (Cap-D2 and Cap-D3) which may express conserved proteins presumably associated with condensin. In silico analyses using public databases suggest that both genes are controlled by factors acting in a cell cycle-dependent manner. Cap-D2 is essential because homozygous T-DNA insertion mutants were not viable. The heterozygous mutant showed wild-type growth habit but reduced fertility. For Cap-D3, we selected two homozygous mutants expressing truncated transcripts which are obviously not fully functional. Both mutants show reduced pollen fertility and seed set (one of them also reduced plant vigour), a lower chromatin density and frequent (peri)centromere association in interphase nuclei. Sister chromatid cohesion was impaired compared to wild-type in the cap-D3 mutants but not in the heterozygous cap-D2 mutant. At superresolution (Structured Illumination Microscopy), we found no alteration of chromatin substructure for both cap-D mutants. Chromosome-associated polypeptide (CAP)-D3 and the cohesin subunit SMC3 form similar but positionally non-overlapping reticulate structures in 2C-16C nuclei, suggesting their importance for interphase chromatin architecture in differentiated nuclei. Thus, we presume that CAP-D proteins are required for fertility, growth, chromatin organisation, sister chromatid cohesion and in a process preventing the association of centromeric repeats.

Keywords

Electronic Supplementary Material Table Interphase Nucleus Sister Chromatid Cohesion COP9 Signalosome Condensin Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Jörg Fuchs for flow sorting of nuclei, Martina Kühne, Andrea Kunze, Andrea Weißleder, Joachim Bruder and Rita Schubert for excellent assistance, Armin Meister for help with statistics and Swetlana Friedel for help with analysis of coexpression by CORNET program.

Supplementary material

412_2013_424_MOESM1_ESM.doc (34 kb)
Figure S1 (DOC 33 kb)
412_2013_424_Fig9_ESM.jpg (36 kb)
Figure S2

(JPEG 35 kb)

412_2013_424_MOESM2_ESM.tif (23.5 mb)
High resolution image (TIFF 24044 kb)
412_2013_424_Fig10_ESM.jpg (82 kb)
Figure S3

(JPEG 81 kb)

412_2013_424_MOESM3_ESM.tif (23.5 mb)
High resolution image (TIFF 24046 kb)
412_2013_424_Fig11_ESM.jpg (94 kb)
Figure S4

(JPEG 93 kb)

412_2013_424_MOESM4_ESM.tif (23.5 mb)
High resolution image (TIFF 24046 kb)
412_2013_424_Fig12_ESM.jpg (90 kb)
Figure S5

(JPEG 89 kb)

412_2013_424_MOESM5_ESM.tif (23.5 mb)
High resolution image (TIFF 24046 kb)
412_2013_424_Fig13_ESM.jpg (66 kb)
Figure S6

(JPEG 66 kb)

412_2013_424_MOESM6_ESM.tif (23.5 mb)
High resolution image (TIFF 24045 kb)
412_2013_424_Fig14_ESM.jpg (90 kb)
Figure S7

(JPEG 89 kb)

412_2013_424_MOESM7_ESM.tif (23.5 mb)
High resolution image (TIFF 24045 kb)
412_2013_424_Fig15_ESM.jpg (57 kb)

Figure/Movie S8 (JPEG 56 kb)

412_2013_424_MOESM8_ESM.tif (23.5 mb)
High resolution image (TIFF 24046 kb)
ESM 1

(AVI 4810 kb)

412_2013_424_MOESM10_ESM.xls (17 kb)
ESM 2 (XLS 17 kb)
412_2013_424_MOESM11_ESM.xls (30 kb)
ESM 3 (XLS 29 kb)
412_2013_424_MOESM12_ESM.doc (49 kb)
ESM 4 (DOC 49 kb)

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  2. Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217PubMedGoogle Scholar
  3. Bauer CR, Hartl TA, Bosco G (2012) Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genet 8:e1002873PubMedCrossRefGoogle Scholar
  4. Bennett MD (1979) Centromere arrangements in Triticum aestivum and their relation to synapsis. Heredity 43:157–157Google Scholar
  5. Berr A, Pecinka A, Meister A, Kreth G, Fuchs J, Blattner FR, Lysak MA, Schubert I (2006) Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant J 48:771–783PubMedCrossRefGoogle Scholar
  6. Brinkley BR, Brenner SL, Hall JM, Tousson A, Balczon RD, Valdivia MM (1986) Arrangements of kinetochores in mouse cells during meiosis and spermiogenesis. Chromosoma 94:309–317PubMedCrossRefGoogle Scholar
  7. Cai X, Dong F, Edelmann RE, Makaroff CA (2003) The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116:2999–3007PubMedCrossRefGoogle Scholar
  8. Carter SD, Sjogren C (2012) The SMC complexes, DNA and chromosome topology: right or knot? Crit Rev Biochem Mol Biol 47:1–16PubMedCrossRefGoogle Scholar
  9. Ceccarelli M, Morosi L, Cionini PG (1998) Chromocenter association in plant cell nuclei: determinants, functional significance, and evolutionary implications. Genome 41:96–103CrossRefGoogle Scholar
  10. Chamovitz DA (2009) Revisiting the COP9 signalosome as a transcriptional regulator. EMBO Rep 10:352–358PubMedCrossRefGoogle Scholar
  11. Church K, Moens PB (1976) Centromere behavior during interphase and meiotic prophase in Allium fistulosum from 3-D E.M. reconstruction. Chromosoma 56:249–263CrossRefGoogle Scholar
  12. Da Ines O, Abe K, Goubely C, Gallego ME, White CI (2012) Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana. PLoS Genet 8:e1002636PubMedCrossRefGoogle Scholar
  13. De Bodt S, Hollunder J, Nelissen H, Meulemeester N, Inze D (2012) CORNET 2.0: integrating plant coexpression, protein–protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol 195:707–720PubMedCrossRefGoogle Scholar
  14. De Nooijer S, Wellink J, Mulder B, Bisseling T (2009) Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucl Acids Res 37:3558–3568PubMedCrossRefGoogle Scholar
  15. De Veylder L, Beeckman T, Beemster GT, De Almeida-Engler J, Ormenes S, Maes S, Naudts M, Van Der Schueren E, Jacqmard A, Engler G, Inze D (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J 21:1360–1368PubMedCrossRefGoogle Scholar
  16. Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 9:687–705PubMedCrossRefGoogle Scholar
  17. Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718PubMedCrossRefGoogle Scholar
  18. Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi TM, Maere S, Beemster GT, Neyt P, Anami S, Robles P, Micol JL, Inze D, Van Lijsebettens M (2007) The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. Plant Cell 19:417–432PubMedCrossRefGoogle Scholar
  19. Fransz P, de Jong H (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J 66:4–17PubMedCrossRefGoogle Scholar
  20. Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Nat Acad Sci USA 99:14584–14589PubMedCrossRefGoogle Scholar
  21. Fujimoto S, Yonemura M, Matsunaga S, Nakagawa T, Uchiyama S, Fukui K (2005) Characterization and dynamic analysis of Arabidopsis condensin subunits, AtCAP-H and AtCAP-H2. Planta 222:293–300PubMedCrossRefGoogle Scholar
  22. Gerlich D, Hirota T, Koch B, Peters JM, Ellenberg J (2006) Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr Biol 16:333–344PubMedCrossRefGoogle Scholar
  23. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49:773–782PubMedCrossRefGoogle Scholar
  24. Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KH, Hudson DF (2012) Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 125:1591–1604PubMedCrossRefGoogle Scholar
  25. Greer E, Martin AC, Pendle A, Colas I, Jones AM, Moore G, Shaw P (2012) The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell 24:152–162PubMedCrossRefGoogle Scholar
  26. Haering CH, Jessberger R (2012) Cohesin in determining chromosome architecture. Exp Cell Res 318:1386–1393PubMedCrossRefGoogle Scholar
  27. Hancock R (2004) Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model. Biol Cell 96:595–601PubMedCrossRefGoogle Scholar
  28. Hartl TA, Smith HF, Bosco G (2008a) Chromosome alignment and transvection are antagonized by condensin II. Science 322:1384–1387PubMedCrossRefGoogle Scholar
  29. Hartl TA, Sweeney SJ, Knepler PJ, Bosco G (2008b) Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genet 4:e1000228PubMedCrossRefGoogle Scholar
  30. Heckmann S, Lermontova I, Berckmans B, De Veylder L, Bäumlein H, Schubert I (2011) The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J 68:646–656PubMedCrossRefGoogle Scholar
  31. Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322PubMedCrossRefGoogle Scholar
  32. Hirano T (2012) Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26:1659–1678PubMedCrossRefGoogle Scholar
  33. Hirano M, Hirano T (2006) Opening closed arms: long-distance activation of SMC ATPase by hinge–DNA interactions. Mol Cell 21:175–186PubMedCrossRefGoogle Scholar
  34. Hudson DF, Marshall KM, Earnshaw WC (2009) Condensin: architect of mitotic chromosomes. Chromosome Res 17:131–144PubMedCrossRefGoogle Scholar
  35. Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100PubMedGoogle Scholar
  36. Jenik PD, Gillmor CS, Lukowitz W (2007) Embryonic patterning in Arabidopsis thaliana. Ann Rev Cell Dev Biol 23:207–236CrossRefGoogle Scholar
  37. Jovtchev G, Watanabe K, Pecinka A, Rosin FM, Mette MF, Lam E, Schubert I (2008) Size and number of tandem repeat arrays can determine somatic homologous pairing of transgene loci mediated by epigenetic modifications in Arabidopsis thaliana nuclei. Chromosoma 117:267–276PubMedCrossRefGoogle Scholar
  38. Jovtchev G, Borisova BE, Kuhlmann M, Fuchs J, Watanabe K, Schubert I, Mette MF (2011) Pairing of lacO tandem repeats in Arabidopsis thaliana nuclei requires the presence of hypermethylated, large arrays at two chromosomal positions, but does not depend on H3-lysine-9-dimethylation. Chromosoma 120:609–619PubMedCrossRefGoogle Scholar
  39. Joyce EF, Williams BR, Xie T, Wu CT (2012) Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet 8:e1002667PubMedCrossRefGoogle Scholar
  40. Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Genet Genomics 272:593–602PubMedCrossRefGoogle Scholar
  41. Kimura M (1983) The neutral theory of molecular evolution. Cambridge Univ Press, Cambridge, p 367CrossRefGoogle Scholar
  42. Kotani H (2002) The size and genome organization of Arabidopsis thaliana. In: Murata M and Sakamoto W (eds) Structure and function of plant centromeres: a challenge to the orthodoxy pp 35–39Google Scholar
  43. Lam WS, Yang X, Makaroff CA (2005) Characterization of Arabidopsis thaliana SMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J Cell Sci 118:3037–3048PubMedCrossRefGoogle Scholar
  44. Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev 8:104–115CrossRefGoogle Scholar
  45. Lermontova I, Fuchs J, Schubert I (2008) The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development. Front Biosci 13:5202–5211PubMedCrossRefGoogle Scholar
  46. Liskova L, Susor A, Pivonkova K, Saskova A, Karabinova P, Kubelka M (2010) Detection of condensin I and II in maturing pig oocytes. Reprod Fertil Dev 22:644–652PubMedCrossRefGoogle Scholar
  47. Liu CM, McElver J, Tzafrir I, Joosen R, Wittich P, Patton D, Van Lammeren AA, Meinke D (2002) Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J 29:405–415CrossRefGoogle Scholar
  48. Longworth MS, Herr A, Ji JY, Dyson NJ (2008) RBF1 promotes chromatin condensation through a conserved interaction with the condensin II protein dCAP-D3. Genes Dev 22:1011–1024PubMedCrossRefGoogle Scholar
  49. Longworth MS, Walker JA, Anderssen E, Moon NS, Gladden A, Heck MM, Ramaswamy S, Dyson NJ (2012) A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity. PLoS Genet 8:e1002618PubMedCrossRefGoogle Scholar
  50. Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287PubMedCrossRefGoogle Scholar
  51. Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473PubMedCrossRefGoogle Scholar
  52. Maestra B, Hans de Jong J, Shepherd K, Naranjo T (2002) Chromosome arrangement and behaviour of two rye homologous telosomes at the onset of meiosis in disomic wheat-5RL addition lines with and without the Ph1 locus. Chromosome Res 10:655–667PubMedCrossRefGoogle Scholar
  53. Magyar Z (2008) Keeping the balance between proliferation and differentiation by the E2F transcriptional regulatory network is central to plant growth and development. In: Bogre L, Beemster GT (eds) Plant growth and signaling. Springer, BerlinGoogle Scholar
  54. Magyar Z, De Veylder L, Atanassova A, Bako L, Inze D, Bogre L (2005) The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell 17:2527–2541PubMedCrossRefGoogle Scholar
  55. Magyar Z, Horvath B, Khan S, Mohammed B, Henriques R, De Veylder L, Bako L, Scheres B, Bogre L (2012) Arabidopsis E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. EMBO J 31:1480–1493PubMedCrossRefGoogle Scholar
  56. Manning AL, Longworth MS, Dyson NJ (2010) Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 24:1364–1376PubMedCrossRefGoogle Scholar
  57. Marenduzzo D, Finan K, Cook PR (2006a) The depletion attraction: an underappreciated force driving cellular organization. J Cell Biol 175:681–686PubMedCrossRefGoogle Scholar
  58. Marenduzzo D, Micheletti C, Cook PR (2006b) Entropy-driven genome organization. Biophys J 90:3712–3721PubMedCrossRefGoogle Scholar
  59. Martinez-Perez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207PubMedCrossRefGoogle Scholar
  60. Martinez-Zapater J, Estelle A, Sommerville C (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:4417–4423CrossRefGoogle Scholar
  61. McNally JG, Mazza D (2010) Fractal geometry in the nucleus. EMBO J 29:2–3PubMedCrossRefGoogle Scholar
  62. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800PubMedCrossRefGoogle Scholar
  63. Misteli T (2009) Self-organization in the genome. Proc Nat Acad Sci USA 106:6885–6886PubMedCrossRefGoogle Scholar
  64. Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145PubMedCrossRefGoogle Scholar
  65. Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648PubMedCrossRefGoogle Scholar
  66. Neuwald AF, Hirano T (2000) HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 10:1445–1452PubMedCrossRefGoogle Scholar
  67. Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K (2012) Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J 31:1644–1653PubMedCrossRefGoogle Scholar
  68. Ono T, Fan Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308PubMedCrossRefGoogle Scholar
  69. Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR (2006) The Smc5-Smc6 DNA repair complex: bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J Biol Chem 281:36952–36959PubMedCrossRefGoogle Scholar
  70. Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysa MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269PubMedCrossRefGoogle Scholar
  71. Pecinka A, Kato N, Meister A, Probst AV, Schubert I, Lam E (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118:3751–3758PubMedCrossRefGoogle Scholar
  72. Peric-Hupkes D, Van Steensel B (2008) Linking cohesin to gene regulation. Cell 132:925–928PubMedCrossRefGoogle Scholar
  73. Prieto P, Santos AP, Moore G, Shaw P (2004) Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112:300–307PubMedCrossRefGoogle Scholar
  74. Rajapakse I, Perlman MD, Scalzo D, Kooperberg C, Groudine M, Kosak ST (2009) The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc Nat Acad Sci USA 106:6679–6684PubMedCrossRefGoogle Scholar
  75. Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011) Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23:3533–3546PubMedCrossRefGoogle Scholar
  76. Samoshkin A, Dulev S, Loukinov D, Rosenfeld JA, Strunnikov AV (2012) Condensin dysfunction in human cells induces nonrandom chromosomal breaks in anaphase, with distinct patterns for both unique and repeated genomic regions. Chromosoma 121:191–199PubMedCrossRefGoogle Scholar
  77. Scherthan H (2007) Telomere attachment and clustering during meiosis. Cell Mol Life Sci 64:117–124PubMedCrossRefGoogle Scholar
  78. Schubert V (2009) SMC proteins and their multiple functions in higher plants. Cytogenet Genome Res 124:202–214PubMedCrossRefGoogle Scholar
  79. Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Meth Cell Sci 23:57–69CrossRefGoogle Scholar
  80. Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I (2006) Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172:467–475PubMedCrossRefGoogle Scholar
  81. Schubert V, Kim YM, Schubert I (2008) Arabidopsis sister chromatids often show complete alignment or separation along a 1.2-Mb euchromatic region but no cohesion “hot spots”. Chromosoma 117:261–266PubMedCrossRefGoogle Scholar
  82. Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I (2009) Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 118:591–605PubMedCrossRefGoogle Scholar
  83. Schubert V, Berr A, Meister A (2012) Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 121:369–387PubMedCrossRefGoogle Scholar
  84. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994PubMedCrossRefGoogle Scholar
  85. Siddiqui NU, Stronghill PE, Dengler RE, Hasenkampf CA, Riggs CD (2003) Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development 130:3283–3295PubMedCrossRefGoogle Scholar
  86. Siddiqui NU, Rusyniak S, Hasenkampf CA, Riggs CD (2006) Disruption of the Arabidopsis SMC4 gene, AtCAP-C, compromises gametogenesis and embryogenesis. Planta 223:990–997PubMedCrossRefGoogle Scholar
  87. Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, Cella R (2006) Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol 140:1355–1366PubMedCrossRefGoogle Scholar
  88. Stephens AD, Haase J, Vicci L, Taylor RM 2nd, Bloom K (2011) Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 193:1167–1180PubMedCrossRefGoogle Scholar
  89. Stewart MN, Dawson DS (2008) Changing partners: moving from non-homologous to homologous centromere pairing in meiosis. Trends Genet 24:564–573PubMedCrossRefGoogle Scholar
  90. Takeo S, Lake CM, Morais-de-Sa E, Sunkel CE, Hawley RS (2011) Synaptonemal complex-dependent centromeric clustering and the initiation of synapsis in Drosophila oocytes. Curr Biol 21:1845–1851PubMedCrossRefGoogle Scholar
  91. Tanneti NS, Landy K, Joyce EF, McKim KS (2011) A pathway for synapsis initiation during zygotene in Drosophila oocytes. Curr Biol 21:1852–1857PubMedCrossRefGoogle Scholar
  92. Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200–1208PubMedCrossRefGoogle Scholar
  93. Thadani R, Uhlmann F, Heeger S (2012) Condensin, chromatin crossbarring and chromosome condensation. Curr Biol 22:R1012–R1021PubMedCrossRefGoogle Scholar
  94. Tsubouchi T, Roeder GS (2005) A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308:870–873PubMedCrossRefGoogle Scholar
  95. Tzafrir I, McElver JA, C-M L, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW (2002) Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol 128:38–51PubMedCrossRefGoogle Scholar
  96. Van den Heuvel S, Dyson NJ (2008) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9:713–724PubMedCrossRefGoogle Scholar
  97. Ward P (2002) FISH probes and labelling techniques. In: FISH. Beatty B, Squire J (eds). Oxford Univ Press: Oxford. pp 5–28Google Scholar
  98. Watanabe K, Pecinka A, Meister A, Schubert I, Lam E (2005) DNA hypomethylation reduces homologous pairing of inserted tandem repeat arrays in somatic nuclei of Arabidopsis thaliana. Plant J 44:531–540PubMedCrossRefGoogle Scholar
  99. Wood AJ, Severson AF, Meyer BJ (2010) Condensin and cohesin complexity: the expanding repertoire of functions. Nature Rev 11:391–404Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany

Personalised recommendations