, Volume 122, Issue 4, pp 245–258 | Cite as

The variant histone H2A.V of Drosophila—three roles, two guises

Review Article


Histone variants play important roles in eukaryotic genome organization, the control of gene expression, cell division and DNA repair. Unlike other organisms that employ several H2A variants for different functions, the parsimonious fruit fly Drosophila melanogaster gets along with just a single H2A variant, H2A.V. Remarkably, H2A.V unites within one molecule features and functions of two different mammalian H2A variants, H2A.Z and H2A.X. Accordingly, H2A.V is involved in diverse functions, as an element of a class of active promoter structure, as a foundation for heterochromatin assembly and as a DNA damage sensor. Here, we comprehensively review the current knowledge of this fascinating histone variant.


Chromatin DNA damage response H2A.X Nucleosome remodelling Transcription 



Work in the authors' lab on nucleosome remodelling is supported by Deutsche Forschungsgemeinschaft through Special Priority Programme 1356. S. Baldi acknowledges support from the Swiss National Science Foundation (SNF). We thank S. Henikoff for helpful comments on the evolution of H2A.V.


  1. Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausio J (2001) Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 276(45):41945–41949. doi: 10.1074/jbc.M108217200 PubMedCrossRefGoogle Scholar
  2. Agelopoulos M, McKay DJ, Mann RS (2012) Developmental regulation of chromatin conformation by Hox proteins in Drosophila. Cell Reports 1(4):350–359. doi: 10.1016/j.celrep.2012.03.003 PubMedCrossRefGoogle Scholar
  3. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446(7135):572–576. doi: 10.1038/nature05632 PubMedCrossRefGoogle Scholar
  4. Andreyeva EN, Kolesnikova TD, Belyaeva ES, Glaser RL, Zhimulev IF (2008) Local DNA underreplication correlates with accumulation of phosphorylated H2Av in the Drosophila melanogaster polytene chromosomes. Chromosome Res 16(6):851–862. doi: 10.1007/s10577-008-1244-4 PubMedCrossRefGoogle Scholar
  5. Barber CM, Turner FB, Wang Y, Hagstrom K, Taverna SD, Mollah S, Ueberheide B, Meyer BJ, Hunt DF, Cheung P, Allis CD (2004) The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved. Chromosoma 112(7):360–371. doi: 10.1007/s00412-004-0281-9 PubMedCrossRefGoogle Scholar
  6. Bönisch C, Hake SB (2012) Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 40(21):10719–10741. doi: 10.1093/nar/gks865 PubMedCrossRefGoogle Scholar
  7. Chakravarthy S, Bao Y, Roberts VA, Tremethick D, Luger K (2004) Structural characterization of histone H2A variants. Cold Spring Harb Symp Quant Biol 69:227–234. doi: 10.1101/sqb.2004.69.227 PubMedCrossRefGoogle Scholar
  8. Chioda M, Vengadasalam S, Kremmer E, Eberharter A, Becker PB (2010) Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. Development 137(20):3513–3522. doi: 10.1242/dev.048405 PubMedCrossRefGoogle Scholar
  9. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223 PubMedCrossRefGoogle Scholar
  10. Clarkson MJ, Wells JR, Gibson F, Saint R, Tremethick DJ (1999) Regions of variant histone His2AvD required for Drosophila development. Nature 399(6737):694–697. doi: 10.1038/21436 PubMedCrossRefGoogle Scholar
  11. Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K, Young RA, Jaenisch R, Boyer LA (2008) H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135(4):649–661. doi: 10.1016/j.cell.2008.09.056 PubMedCrossRefGoogle Scholar
  12. Donahue PR, Palmer DK, Condie JM, Sabatini LM, Blumenfeld M (1986) Drosophila histone H2A.2 is associated with the interbands of polytene chromosomes. Proc Natl Acad Sci USA 83(13):4744–4748PubMedCrossRefGoogle Scholar
  13. Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408(6815):1001–1004. doi: 10.1038/35050000 PubMedCrossRefGoogle Scholar
  14. Eissenberg JC, Morris GD, Reuter G, Hartnett T (1992) The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131(2):345–352PubMedGoogle Scholar
  15. Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JR, Taylor H, Matthaei K, Rathjen PD, Tremethick DJ, Lyons I (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11(15):1183–1187PubMedCrossRefGoogle Scholar
  16. Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9(3):172–176. doi: 10.1038/nsb767 PubMedGoogle Scholar
  17. Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol Cell 16(4):655–661. doi: 10.1016/j.molcel.2004.10.023 PubMedCrossRefGoogle Scholar
  18. Freeman AK, Monteiro AN (2010) Phosphatases in the cellular response to DNA damage. Cell Commun Signal 8:27. doi: 10.1186/1478-811X-8-27 PubMedCrossRefGoogle Scholar
  19. Frydrychova RC, Mason JM, Archer TK (2008) HP1 is distributed within distinct chromatin domains at Drosophila telomeres. Genetics 180(1):121–131. doi: 10.1534/genetics.108.090647 PubMedCrossRefGoogle Scholar
  20. Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M, Ellis J, Bazett-Jones DP (2012) Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep. doi: 10.1038/embor.2012.139 PubMedGoogle Scholar
  21. Goldman JA, Garlick JD, Kingston RE (2010) Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z. J Biol Chem 285(7):4645–4651. doi: 10.1074/jbc.M109.072348 PubMedCrossRefGoogle Scholar
  22. Gorski MM, Eeken JC, de Jong AW, Klink I, Loos M, Romeijn RJ, van Veen BL, Mullenders LH, Ferro W, Pastink A (2003) The Drosophila melanogaster DNA ligase IV gene plays a crucial role in the repair of radiation-induced DNA double-strand breaks and acts synergistically with Rad54. Genetics 165(4):1929–1941PubMedGoogle Scholar
  23. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471(7339):473–479. doi: 10.1038/nature09715 PubMedCrossRefGoogle Scholar
  24. Guertin MJ, Petesch SJ, Zobeck KL, Min IM, Lis JT (2010) Drosophila heat shock system as a general model to investigate transcriptional regulation. Cold Spring Harb Symp Quant Biol 75:1–9. doi: 10.1101/sqb.2010.75.039 PubMedCrossRefGoogle Scholar
  25. Hanai K, Furuhashi H, Yamamoto T, Akasaka K, Hirose S (2008) RSF governs silent chromatin formation via histone H2Av replacement. PLoS Genet 4(2):e1000011. doi: 10.1371/journal.pgen.1000011 PubMedCrossRefGoogle Scholar
  26. Hardy S, Jacques PE, Gevry N, Forest A, Fortin ME, Laflamme L, Gaudreau L, Robert F (2009) The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet 5(10):e1000687PubMedCrossRefGoogle Scholar
  27. Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21:133–153. doi: 10.1146/annurev.cellbio.21.012704.133518 PubMedCrossRefGoogle Scholar
  28. Henikoff S, Henikoff JG, Sakai A, Loeb GB, Ahmad K (2009) Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res 19(3):460–469. doi: 10.1101/gr.087619.108 PubMedCrossRefGoogle Scholar
  29. Ismail IH, Hendzel MJ (2008) The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ Mol Mutagen 49(1):73–82. doi: 10.1002/em.20358 PubMedCrossRefGoogle Scholar
  30. Jang JK, Sherizen DE, Bhagat R, Manheim EA, McKim KS (2003) Relationship of DNA double-strand breaks to synapsis in Drosophila. J Cell Sci 116(Pt 15):3069–3077. doi: 10.1242/jcs.00614 PubMedCrossRefGoogle Scholar
  31. Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21(12):1519–1529. doi: 10.1101/gad.1547707 PubMedCrossRefGoogle Scholar
  32. Johansson AM, Stenberg P, Allgardsson A, Larsson J (2012) POF regulates the expression of genes on the fourth chromosome in Drosophila melanogaster by binding to nascent RNA. Mol Cell Biol 32(11):2121–2134. doi: 10.1128/MCB.06622-11 PubMedCrossRefGoogle Scholar
  33. Joyce EF, Pedersen M, Tiong S, White-Brown SK, Paul A, Campbell SD, McKim KS (2011) Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair. J Cell Biol 195(3):359–367. doi: 10.1083/jcb.201104121 PubMedCrossRefGoogle Scholar
  34. Kamakaka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19(3):295–310. doi: 10.1101/gad.1272805 PubMedCrossRefGoogle Scholar
  35. Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ, Madhani HD, Rine J (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2(5):E131PubMedCrossRefGoogle Scholar
  36. Kooistra R, Pastink A, Zonneveld JB, Lohman PH, Eeken JC (1999) The Drosophila melanogaster DmRAD54 gene plays a crucial role in double-strand break repair after P-element excision and acts synergistically with Ku70 in the repair of X-ray damage. Mol Cell Biol 19(9):6269–6275PubMedGoogle Scholar
  37. Kotova E, Lodhi N, Jarnik M, Pinnola AD, Ji Y, Tulin AV (2011) Drosophila histone H2A variant (H2Av) controls poly(ADP-ribose) polymerase 1 (PARP1) activation in chromatin. Proc Natl Acad Sci USA 108(15):6205–6210. doi: 10.1073/pnas.1019644108 PubMedCrossRefGoogle Scholar
  38. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi: 10.1016/j.cell.2007.02.005 PubMedCrossRefGoogle Scholar
  39. Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, Canadien V, Richards DP, Wu X, Emili A, Hughes TR, Buratowski S, Greenblatt JF (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12(6):1565–1576PubMedCrossRefGoogle Scholar
  40. Ku M, Jaffe JD, Koche RP, Rheinbay E, Endoh M, Koseki H, Carr SA, Bernstein BE (2012) H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions. Genome Biol 13(10):R85PubMedCrossRefGoogle Scholar
  41. Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306(5704):2084–2087. doi: 10.1126/science.1103455 PubMedCrossRefGoogle Scholar
  42. Leach TJ, Mazzeo M, Chotkowski HL, Madigan JP, Wotring MG, Glaser RL (2000) Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J Biol Chem 275(30):23267–23272. doi: 10.1074/jbc.M910206199 PubMedCrossRefGoogle Scholar
  43. LeRoy G, Orphanides G, Lane WS, Reinberg D (1998) Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282(5395):1900–1904PubMedCrossRefGoogle Scholar
  44. Li A, Yu Y, Lee SC, Ishibashi T, Lees-Miller SP, Ausio J (2010) Phosphorylation of histone H2A.X by DNA-dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. J Biol Chem 285(23):17778–17788. doi: 10.1074/jbc.M110.116426 PubMedCrossRefGoogle Scholar
  45. Liu X, Li B, Gorovsky MA (1996) Essential and nonessential histone H2A variants in Tetrahymena thermophila. Mol Cell Biol 16(8):4305–4311PubMedGoogle Scholar
  46. Loyola A, LeRoy G, Wang YH, Reinberg D (2001) Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev 15(21):2837–2851. doi: 10.1101/gad.937401 PubMedGoogle Scholar
  47. Lu J, Ruhf ML, Perrimon N, Leder P (2007) A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. Proc Natl Acad Sci USA 104(22):9381–9386. doi: 10.1073/pnas.0610279104 PubMedCrossRefGoogle Scholar
  48. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. doi: 10.1038/38444 PubMedCrossRefGoogle Scholar
  49. Luk E, Ranjan A, Fitzgerald PC, Mizuguchi G, Huang Y, Wei D, Wu C (2010) Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143(5):725–736. doi: 10.1016/j.cell.2010.10.019 PubMedCrossRefGoogle Scholar
  50. Lusser A, Urwin DL, Kadonaga JT (2005) Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12(2):160–166. doi: 10.1038/nsmb884 PubMedCrossRefGoogle Scholar
  51. Madigan JP, Chotkowski HL, Glaser RL (2002) DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res 30(17):3698–3705PubMedCrossRefGoogle Scholar
  52. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10(11):882–891. doi: 10.1038/nsb996 PubMedCrossRefGoogle Scholar
  53. March-Diaz R, Reyes JC (2009) The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant 2(4):565–577. doi: 10.1093/mp/ssp019 PubMedCrossRefGoogle Scholar
  54. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster SC, Gilmour DS, Albert I, Pugh BF (2008) Nucleosome organization in the Drosophila genome. Nature 453(7193):358–362. doi: 10.1038/nature06929 PubMedCrossRefGoogle Scholar
  55. Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112(5):725–736PubMedCrossRefGoogle Scholar
  56. Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20(6):711–722. doi: 10.1101/gad.1395506 PubMedCrossRefGoogle Scholar
  57. Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37(10):1090–1097. doi: 10.1038/ng1637 PubMedCrossRefGoogle Scholar
  58. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303(5656):343–348. doi: 10.1126/science.1090701 PubMedCrossRefGoogle Scholar
  59. Morrison AJ, Shen X (2009) Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 10(6):373–384. doi: 10.1038/nrm2693 PubMedCrossRefGoogle Scholar
  60. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101(33):12248–12253. doi: 10.1073/pnas.0402780101 PubMedCrossRefGoogle Scholar
  61. Palmer D, Snyder LA, Blumenfeld M (1980) Drosophila nucleosomes contain an unusual histone-like protein. Proc Natl Acad Sci USA 77(5):2671–2675PubMedCrossRefGoogle Scholar
  62. Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144(2):200–213. doi: 10.1016/j.cell.2010.12.021 PubMedCrossRefGoogle Scholar
  63. Park YJ, Dyer PN, Tremethick DJ, Luger K (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279(23):24274–24282. doi: 10.1074/jbc.M313152200 PubMedCrossRefGoogle Scholar
  64. Petesch SJ, Lis JT (2012) Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45(1):64–74. doi: 10.1016/j.molcel.2011.11.015 PubMedCrossRefGoogle Scholar
  65. Poggeler S, Kuck U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10. doi: 10.1016/j.gene.2006.03.020 PubMedCrossRefGoogle Scholar
  66. Rach EA, Winter DR, Benjamin AM, Corcoran DL, Ni T, Zhu J, Ohler U (2011) Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level. PLoS Genet 7(1):e1001274. doi: 10.1371/journal.pgen.1001274 PubMedCrossRefGoogle Scholar
  67. Rangasamy D, Berven L, Ridgway P, Tremethick DJ (2003) Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 22(7):1599–1607. doi: 10.1093/emboj/cdg160 PubMedCrossRefGoogle Scholar
  68. Ridgway P, Brown KD, Rangasamy D, Svensson U, Tremethick DJ (2004) Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. J Biol Chem 279(42):43815–43820. doi: 10.1074/jbc.M408409200 PubMedCrossRefGoogle Scholar
  69. Rong YS (2008) Loss of the histone variant H2A.Z restores capping to checkpoint-defective telomeres in Drosophila. Genetics 180(4):1869–1875. doi: 10.1534/genetics.108.095547 PubMedCrossRefGoogle Scholar
  70. Ruhf ML, Braun A, Papoulas O, Tamkun JW, Randsholt N, Meister M (2001) The domino gene of Drosophila encodes novel members of the SWI2/SNF2 family of DNA-dependent ATPases, which contribute to the silencing of homeotic genes. Development 128(8):1429–1441PubMedGoogle Scholar
  71. Ruhl DD, Jin J, Cai Y, Swanson S, Florens L, Washburn MP, Conaway RC, Conaway JW, Chrivia JC (2006) Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45(17):5671–5677. doi: 10.1021/bi060043d PubMedCrossRefGoogle Scholar
  72. Santisteban MS, Kalashnikova T, Smith MM (2000) Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell 103(3):411–422PubMedCrossRefGoogle Scholar
  73. Sarcinella E, Zuzarte PC, Lau PN, Draker R, Cheung P (2007) Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 27(18):6457–6468. doi: 10.1128/MCB.00241-07 PubMedCrossRefGoogle Scholar
  74. Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21(5):1121–1131. doi: 10.1093/emboj/21.5.1121 PubMedCrossRefGoogle Scholar
  75. Squatrito M, Gorrini C, Amati B (2006) Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16(9):433–442. doi: 10.1016/j.tcb.2006.07.007 PubMedCrossRefGoogle Scholar
  76. Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 7(12):1121–1124. doi: 10.1038/81971 PubMedCrossRefGoogle Scholar
  77. Swaminathan J, Baxter EM, Corces VG (2005) The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 19(1):65–76. doi: 10.1101/gad.1259105 PubMedCrossRefGoogle Scholar
  78. Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SW, Cross GA, Cui L, Dimitrov SI, Doenecke D, Eirin-Lopez JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics & Chromatin 5:7. doi: 10.1186/1756-8935-5-7 CrossRefGoogle Scholar
  79. Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275. doi: 10.1038/nrm2861 PubMedCrossRefGoogle Scholar
  80. Tanabe M, Kouzmenko AP, Ito S, Sawatsubashi S, Suzuki E, Fujiyama S, Yamagata K, Zhao Y, Kimura S, Ueda T, Murata T, Matsukawa H, Takeyama K, Kato S (2008) Activation of facultatively silenced Drosophila loci associates with increased acetylation of histone H2AvD. Genes Cells 13(12):1279–1288. doi: 10.1111/j.1365-2443.2008.01244.x PubMedCrossRefGoogle Scholar
  81. Torigoe SE, Urwin DL, Ishii H, Smith DE, Kadonaga JT (2011) Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol Cell 43(4):638–648. doi: 10.1016/j.molcel.2011.07.017 PubMedCrossRefGoogle Scholar
  82. van Daal A, Elgin SC (1992) A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell 3(6):593–602PubMedGoogle Scholar
  83. van Daal A, White EM, Gorovsky MA, Elgin SC (1988) Drosophila has a single copy of the gene encoding a highly conserved histone H2A variant of the H2A.F/Z type. Nucleic Acids Res 16(15):7487–7497PubMedCrossRefGoogle Scholar
  84. Wagner EJ, Burch BD, Godfrey AC, Salzler HR, Duronio RJ, Marzluff WF (2007) A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol Cell 28(4):692–699. doi: 10.1016/j.molcel.2007.10.009 PubMedCrossRefGoogle Scholar
  85. Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9(10):1263–1277PubMedCrossRefGoogle Scholar
  86. Weber CM, Henikoff JG, Henikoff S (2010) H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 17(12):1500–1507. doi: 10.1038/nsmb.1926 PubMedCrossRefGoogle Scholar
  87. Wyrick JJ, Kyriss MN, Davis WB (2012) Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer. Biochim Biophys Acta 1819(8):892–901. doi: 10.1016/j.bbagrm.2012.04.001 PubMedCrossRefGoogle Scholar
  88. Wyrick JJ, Parra MA (2009) The role of histone H2A and H2B post-translational modifications in transcription: a genomic perspective. Biochim Biophys Acta 1789(1):37–44. doi: 10.1016/j.bbagrm.2008.07.001 PubMedCrossRefGoogle Scholar
  89. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457(7225):57–62. doi: 10.1038/nature07668 PubMedCrossRefGoogle Scholar
  90. Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48(5):723–733. doi: 10.1016/j.molcel.2012.09.026 PubMedCrossRefGoogle Scholar
  91. Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123(2):219–231. doi: 10.1016/j.cell.2005.08.036 PubMedCrossRefGoogle Scholar
  92. Zhang Z, Pugh BF (2011) Genomic organization of H2Av containing nucleosomes in Drosophila heterochromatin. PLoS One 6(6):e20511. doi: 10.1371/journal.pone.0020511 PubMedCrossRefGoogle Scholar
  93. Zlatanova J, Thakar A (2008) H2A.Z: view from the top. Structure 16(2):166–179. doi: 10.1016/j.str.2007.12.008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center for Integrated Protein Science, Adolf-Butenandt-InstituteLudwig-Maximilians-UniversityMunichGermany
  2. 2.Adolf-Butenandt-InstitutLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations