, Volume 122, Issue 3, pp 175–190 | Cite as

Condensin: crafting the chromosome landscape

  • Ilaria Piazza
  • Christian H. Haering
  • Anna Rutkowska
Review Article


The successful transmission of complete genomes from mother to daughter cells during cell divisions requires the structural re-organization of chromosomes into individualized and compact structures that can be segregated by mitotic spindle microtubules. Multi-subunit protein complexes named condensins play a central part in this chromosome condensation process, but the mechanisms behind their actions are still poorly understood. An increasing body of evidence suggests that, in addition to their role in shaping mitotic chromosomes, condensin complexes have also important functions in directing the three-dimensional arrangement of chromatin fibers within the interphase nucleus. To fulfill their different functions in genome organization, the activity of condensin complexes and their localization on chromosomes need to be strictly controlled. In this review article, we outline the regulation of condensin function by phosphorylation and other posttranslational modifications at different stages of the cell cycle. We furthermore discuss how these regulatory mechanisms are used to control condensin binding to specific chromosome domains and present a comprehensive overview of condensin’s interaction partners in these processes.


Chromosome condensation Mitosis Segregation Phosphorylation Nucleosome 



Work in the Haering laboratory is supported by EMBL and the German Research Foundation (DFG).


  1. Abe S, Nagasaka K, Hirayama Y et al (2011) The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev 25:863–874. doi: 10.1101/gad.2016411 PubMedCrossRefGoogle Scholar
  2. Adachi Y, Luke M, Laemmli UK (1991) Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell 64:137–148PubMedCrossRefGoogle Scholar
  3. Akai Y, Kurokawa Y, Nakazawa N et al (2011) Opposing role of condensin hinge against replication protein A in mitosis and interphase through promoting DNA annealing. Open Biol 1:110023. doi: 10.1098/rsob.110023 PubMedCrossRefGoogle Scholar
  4. Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424. doi: 10.1083/jcb.200111002 PubMedCrossRefGoogle Scholar
  5. Aono N, Sutani T, Tomonaga T et al (2002) Cnd2 has dual roles in mitotic condensation and interphase. Nature 417:197–202. doi: 10.1038/417197a PubMedCrossRefGoogle Scholar
  6. Bachellier-Bassi S, Gadal O, Bourout G, Nehrbass U (2008) Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae. J Struct Biol 162:248–259. doi: 10.1016/j.jsb.2008.01.002 PubMedCrossRefGoogle Scholar
  7. Ball AR, Schmiesing JA, Zhou C et al (2002) Identification of a chromosome-targeting domain in the human condensin subunit CNAP1/hCAP-D2/Eg7. Mol Cell Biol 22:5769–5781PubMedCrossRefGoogle Scholar
  8. Baxter J, Aragón L (2012) A model for chromosome condensation based on the interplay between condensin and topoisomerase II. Trends Genet 28:110–117. doi: 10.1016/j.tig.2011.11.004 PubMedCrossRefGoogle Scholar
  9. Bazile F, St-Pierre J, D’Amours D (2010) Three-step model for condensin activation during mitotic chromosome condensation. Cell Cycle 9:3243–3255. doi: 10.4161/cc.9.16.12620 PubMedCrossRefGoogle Scholar
  10. Bernad R, Sánchez P, Rivera T et al (2011) Xenopus HJURP and condensin II are required for CENP-A assembly. J Cell Biol 192:569–582. doi: 10.1083/jcb.201005136 PubMedCrossRefGoogle Scholar
  11. Bhalla N, Biggins S, Murray AW (2002) Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol Biol Cell 13:632–645. doi: 10.1091/mbc.01-05-0264 PubMedCrossRefGoogle Scholar
  12. Brito IL, Yu H-G, Amon A (2010) Condensins promote coorientation of sister chromatids during meiosis I in budding yeast. Genetics 185:55–64. doi: 10.1534/genetics.110.115139 PubMedCrossRefGoogle Scholar
  13. Bürmann F, Shin H-C, Basquin J et al (2013) An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat Struct Mol Biol 20:371–379. doi: 10.1038/nsmb.2488
  14. Chen ES, Sutani T, Yanagida M (2004) Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin. Proc Natl Acad Sci USA 101:8078–8083. doi: 10.1073/pnas.0307976101 PubMedCrossRefGoogle Scholar
  15. Ciosk R, Shirayama M, Shevchenko A et al (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254PubMedCrossRefGoogle Scholar
  16. Clemente-Blanco A, Mayán-Santos M, Schneider DA et al (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458:219–222. doi: 10.1038/nature07652 PubMedCrossRefGoogle Scholar
  17. Collette KS, Petty EL, Golenberg N et al (2011) Different roles for Aurora B in condensin targeting during mitosis and meiosis. J Cell Sci 124:3684–3694. doi: 10.1242/jcs.088336 PubMedCrossRefGoogle Scholar
  18. Corbett KD, Yip CK, Ee L-S et al (2010) The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 142:556–567. doi: 10.1016/j.cell.2010.07.017 PubMedCrossRefGoogle Scholar
  19. Cuvier O, Hirano T (2003) A role of topoisomerase II in linking DNA replication to chromosome condensation. J Cell Biol 160:645–655. doi: 10.1083/jcb.200209023 PubMedCrossRefGoogle Scholar
  20. Cuylen S, Haering CH (2011) Deciphering condensin action during chromosome segregation. Trends Cell Biol 21:552–559. doi: 10.1016/j.tcb.2011.06.003 PubMedCrossRefGoogle Scholar
  21. Cuylen S, Metz J, Haering CH (2011) Condensin structures chromosomal DNA through topological links. Nat Struct Mol Biol 18:894–901. doi: 10.1038/nsmb.2087 PubMedCrossRefGoogle Scholar
  22. D’Ambrosio C, Schmidt CK, Katou Y et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227. doi: 10.1101/gad.1675708 PubMedCrossRefGoogle Scholar
  23. D’Amours D, Stegmeier F, Amon A (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117:455–469PubMedCrossRefGoogle Scholar
  24. Denison C, Rudner AD, Gerber SA et al (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4:246–254. doi: 10.1074/mcp.M400154-MCP200 PubMedCrossRefGoogle Scholar
  25. Eide T, Carlson C, Taskén KA et al (2002) Distinct but overlapping domains of AKAP95 are implicated in chromosome condensation and condensin targeting. EMBO Rep 3:426–432. doi: 10.1093/embo-reports/kvf089 PubMedCrossRefGoogle Scholar
  26. Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824PubMedCrossRefGoogle Scholar
  27. Geiman TM, Sankpal UT, Robertson AK et al (2004) Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucleic Acids Res 32:2716–2729. doi: 10.1093/nar/gkh589 PubMedCrossRefGoogle Scholar
  28. Gerlich D, Hirota T, Koch B et al (2006) Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr Biol 16:333–344. doi: 10.1016/j.cub.2005.12.040 PubMedCrossRefGoogle Scholar
  29. Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669–682PubMedCrossRefGoogle Scholar
  30. Graumann PL, Knust T (2009) Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosom Res 17:265–275. doi: 10.1007/s10577-008-9014-x CrossRefGoogle Scholar
  31. Green LC, Kalitsis P, Chang TM et al (2012) Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 125:1591–1604. doi: 10.1242/jcs.097790 PubMedCrossRefGoogle Scholar
  32. Gregan J, Riedel CG, Pidoux AL et al (2007) The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr Biol 17:1190–1200. doi: 10.1016/j.cub.2007.06.044 PubMedCrossRefGoogle Scholar
  33. Haering CH, Farcas A-M, Arumugam P et al (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301. doi: 10.1038/nature07098 PubMedCrossRefGoogle Scholar
  34. Haeusler RA, Pratt-Hyatt M, Good PD et al (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 22:2204–2214. doi: 10.1101/gad.1675908 PubMedCrossRefGoogle Scholar
  35. Hagstrom KA (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742. doi: 10.1101/gad.968302 PubMedCrossRefGoogle Scholar
  36. Hannich JT, Lewis A, Kroetz MB et al (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110. doi: 10.1074/jbc.M413209200 PubMedCrossRefGoogle Scholar
  37. Heale JT, Ball AR, Schmiesing JA et al (2006) Condensin I interacts with the PARP-1–XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 21:837–848. doi: 10.1016/j.molcel.2006.01.036 PubMedCrossRefGoogle Scholar
  38. Hegemann B, Hutchins JRA, Hudecz O et al (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4:rs12. doi: 10.1126/scisignal.2001993 PubMedCrossRefGoogle Scholar
  39. Hirano T (2005) Condensins: organizing and segregating the genome. Curr Biol 15:R265–R275. doi: 10.1016/j.cub.2005.03.037 PubMedCrossRefGoogle Scholar
  40. Hirano T (2012) Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26:1659–1678. doi: 10.1101/gad.194746.112 PubMedCrossRefGoogle Scholar
  41. Hirano M, Hirano T (1998) ATP-dependent aggregation of single-stranded DNA by a bacterial SMC homodimer. EMBO J 17:7139–7148. doi: 10.1093/emboj/17.23.7139 PubMedCrossRefGoogle Scholar
  42. Hirano T, Mitchison TJ (1993) Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts. J Cell Biol 120:601–612PubMedCrossRefGoogle Scholar
  43. Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521PubMedCrossRefGoogle Scholar
  44. Hirota T, Gerlich D, Koch B et al (2004) Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 117:6435–6445. doi: 10.1242/jcs.01604 PubMedCrossRefGoogle Scholar
  45. Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5:323–336PubMedCrossRefGoogle Scholar
  46. Hudson DF, Ohta S, Freisinger T et al (2008) Molecular and genetic analysis of condensin function in vertebrate cells. Mol Biol Cell 19:3070–3079. doi: 10.1091/mbc.E08-01-0057 PubMedCrossRefGoogle Scholar
  47. Hudson DF, Marshall KM, Earnshaw WC (2009) Condensin: architect of mitotic chromosomes. Chromosome Res 17:131–144. doi: 10.1007/s10577-008-9009-7 PubMedCrossRefGoogle Scholar
  48. Iwasaki O, Tanaka A, Tanizawa H et al (2010) Centromeric localization of dispersed Pol III genes in fission yeast. Mol Biol Cell 21:254–265. doi: 10.1091/mbc.E09-09-0790 PubMedCrossRefGoogle Scholar
  49. Johzuka K, Horiuchi T (2009) The cis element and factors required for condensin recruitment to chromosomes. Mol Cell 34:26–35. doi: 10.1016/j.molcel.2009.02.021 PubMedCrossRefGoogle Scholar
  50. Johzuka K, Terasawa M, Ogawa H et al (2006) Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae. Mol Cell Biol 26:2226–2236. doi: 10.1128/MCB.26.6.2226-2236.2006 PubMedCrossRefGoogle Scholar
  51. Kaitna S, Pasierbek P, Jantsch M et al (2002) The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous Chromosomes during meiosis. Curr Biol 12:798–812PubMedCrossRefGoogle Scholar
  52. Kim H-S, Vanoosthuyse V, Fillingham J et al (2009) An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat Struct Mol Biol 16:1286–1293. doi: 10.1038/nsmb.1688 PubMedCrossRefGoogle Scholar
  53. Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90:625–634PubMedCrossRefGoogle Scholar
  54. Kimura K, Hirano M, Kobayashi R, Hirano T (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282:487–490PubMedCrossRefGoogle Scholar
  55. Kimura K, Rybenkov VV, Crisona NJ et al (1999) 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98:239–248PubMedCrossRefGoogle Scholar
  56. Kimura K, Cuvier O, Hirano T (2001) Chromosome condensation by a human condensin complex in Xenopus egg extracts. J Biol Chem 276:5417–5420. doi: 10.1074/jbc.C000873200 PubMedCrossRefGoogle Scholar
  57. Kong X, Stephens J, Ball AR et al (2011) Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP1. PLoS One 6:e23548. doi: 10.1371/journal.pone.0023548 PubMedCrossRefGoogle Scholar
  58. Lammens A, Schele A, Hopfner K-P (2004) Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr Biol 14:1778–1782. doi: 10.1016/j.cub.2004.09.044 PubMedCrossRefGoogle Scholar
  59. Lammens K, Bemeleit DJ, Möckel C et al (2011) The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145:54–66. doi: 10.1016/j.cell.2011.02.038 PubMedCrossRefGoogle Scholar
  60. Lavoie BD, Hogan E, Koshland D (2004) In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 18:76–87. doi: 10.1101/gad.1150404 PubMedCrossRefGoogle Scholar
  61. Lipp JJ, Hirota T, Poser I, Peters J-M (2007) Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci 120:1245–1255. doi: 10.1242/jcs.03425 PubMedCrossRefGoogle Scholar
  62. Liu W, Tanasa B, Tyurina OV et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466:508–512. doi: 10.1038/nature09272 PubMedCrossRefGoogle Scholar
  63. Longworth MS, Herr A, Ji J-Y, Dyson NJ (2008) RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev 22:1011–1024. doi: 10.1101/gad.1631508 PubMedCrossRefGoogle Scholar
  64. Losada A, Hirano T (2001) Intermolecular DNA interactions stimulated by the cohesin complex in vitro: implications for sister chromatid cohesion. Curr Biol 11:268–272PubMedCrossRefGoogle Scholar
  65. Losada A, Hirano M, Hirano T (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16:3004–3016. doi: 10.1101/gad.249202 PubMedCrossRefGoogle Scholar
  66. MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13:25–39. doi: 10.1091/mbc.01-09-0441 PubMedCrossRefGoogle Scholar
  67. Maddox PS, Portier N, Desai A, Oegema K (2006) Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc Natl Acad Sci USA 103:15097–15102. doi: 10.1073/pnas.0606993103 PubMedCrossRefGoogle Scholar
  68. Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4:467–480PubMedCrossRefGoogle Scholar
  69. Manning AL, Longworth MS, Dyson NJ (2010) Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 24:1364–1376. doi: 10.1101/gad.1917310 PubMedCrossRefGoogle Scholar
  70. Mazumdar M, Sundareshan S, Misteli T (2004) Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166:613–620. doi: 10.1083/jcb.200401142 PubMedCrossRefGoogle Scholar
  71. Möckel C, Lammens K, Schele A, Hopfner K-P (2012) ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res 40:914–927. doi: 10.1093/nar/gkr749 PubMedCrossRefGoogle Scholar
  72. Monje-Casas F, Prabhu VR, Lee BH et al (2007) Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128:477–490. doi: 10.1016/j.cell.2006.12.040 PubMedCrossRefGoogle Scholar
  73. Mora-Bermúdez F, Gerlich D, Ellenberg J (2007) Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat Cell Biol 9:822–831. doi: 10.1038/ncb1606 PubMedCrossRefGoogle Scholar
  74. Nakazawa N, Nakamura T, Kokubu A et al (2008) Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J Cell Biol 180:1115–1131. doi: 10.1083/jcb.200708170 PubMedCrossRefGoogle Scholar
  75. Nakazawa N, Mehrotra R, Ebe M, Yanagida M (2011) Condensin phosphorylated by the Aurora-B-like kinase Ark1 is continuously required until telophase in a mode distinct from Top2. J Cell Sci 124:1795–1807. doi: 10.1242/jcs.078733 PubMedCrossRefGoogle Scholar
  76. Nasmyth K (2011) Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13:1170–1177. doi: 10.1038/ncb2349 PubMedCrossRefGoogle Scholar
  77. Neuwald AF, Hirano T (2000) HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 10:1445–1452PubMedCrossRefGoogle Scholar
  78. Noma K-I, Cam HP, Maraia RJ, Grewal SIS (2006) A role for TFIIIC transcription factor complex in genome organization. Cell 125:859–872. doi: 10.1016/j.cell.2006.04.028 PubMedCrossRefGoogle Scholar
  79. Nousiainen M, Silljé HHW, Sauer G et al (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci USA 103:5391–5396. doi: 10.1073/pnas.0507066103 PubMedCrossRefGoogle Scholar
  80. Oliveira RA, Coelho PA, Sunkel CE (2005) The condensin I subunit Barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Mol Cell Biol 25:8971–8984. doi: 10.1128/MCB.25.20.8971-8984.2005 PubMedCrossRefGoogle Scholar
  81. Onn I, Aono N, Hirano M, Hirano T (2007) Reconstitution and subunit geometry of human condensin complexes. EMBO J 26:1024–1034. doi: 10.1038/sj.emboj.7601562 PubMedCrossRefGoogle Scholar
  82. Ono T, Losada A, Hirano M et al (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121PubMedCrossRefGoogle Scholar
  83. Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308. doi: 10.1091/mbc.E04-03-0242 PubMedCrossRefGoogle Scholar
  84. Petronczki M, Matos J, Mori S et al (2006) Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126:1049–1064. doi: 10.1016/j.cell.2006.07.029 PubMedCrossRefGoogle Scholar
  85. Poirier MG, Marko JF (2002) Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci USA 99:15393–15397. doi: 10.1073/pnas.232442599 PubMedCrossRefGoogle Scholar
  86. Rabitsch KP, Petronczki M, Javerzat JP et al (2003) Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev Cell 4:535–548PubMedCrossRefGoogle Scholar
  87. Renshaw MJ, Ward JJ, Kanemaki M et al (2010) Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation. Dev Cell 19:232–244. doi: 10.1016/j.devcel.2010.07.013 PubMedCrossRefGoogle Scholar
  88. Ribeiro SA, Gatlin JC, Dong Y et al (2009) Condensin regulates the stiffness of vertebrate centromeres. Mol Biol Cell 20:2371–2380. doi: 10.1091/mbc.E08-11-1127 PubMedCrossRefGoogle Scholar
  89. Saitoh N, Goldberg IG, Wood ER, Earnshaw WC (1994) ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127:303–318PubMedCrossRefGoogle Scholar
  90. Saka Y, Sutani T, Yamashita Y et al (1994) Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J 13:4938–4952PubMedGoogle Scholar
  91. Sakai A, Hizume K, Sutani T et al (2003) Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein–protein assembly. EMBO J 22:2764–2775. doi: 10.1093/emboj/cdg247 PubMedCrossRefGoogle Scholar
  92. Samejima K, Samejima I, Vagnarelli P et al (2012) Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J Cell Biol 199:755–770. doi: 10.1083/jcb.201202155 PubMedCrossRefGoogle Scholar
  93. Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28:2511–2531. doi: 10.1038/emboj.2009.173 PubMedCrossRefGoogle Scholar
  94. Schmiesing JA, Gregson HC, Zhou S, Yokomori K (2000) A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol Cell Biol 20:6996–7006PubMedCrossRefGoogle Scholar
  95. Shintomi K, Hirano T (2011) The relative ratio of condensin I to II determines chromosome shapes. Genes Dev 25:1464–1469. doi: 10.1101/gad.2060311 PubMedCrossRefGoogle Scholar
  96. Steen RL, Cubizolles F, Le Guellec K, Collas P (2000) A kinase-anchoring protein (AKAP)95 recruits human chromosome-associated protein (hCAP)-D2/Eg7 for chromosome condensation in mitotic extract. J Cell Biol 149:531–536PubMedCrossRefGoogle Scholar
  97. Steffensen S, Coelho PA, Cobbe N et al (2001) A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Curr Biol 11:295–307PubMedCrossRefGoogle Scholar
  98. Stephens AD, Haase J, Vicci L et al (2011) Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 193:1167–1180. doi: 10.1083/jcb.201103138 PubMedCrossRefGoogle Scholar
  99. St-Pierre J, Douziech M, Bazile F et al (2009) Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol Cell 34:416–426. doi: 10.1016/j.molcel.2009.04.013 PubMedCrossRefGoogle Scholar
  100. Stray JE, Lindsley JE (2003) Biochemical analysis of the yeast condensin Smc2/4 complex: an ATPase that promotes knotting of circular DNA. J Biol Chem 278:26238–26248. doi: 10.1074/jbc.M302699200 PubMedCrossRefGoogle Scholar
  101. Stray JE, Crisona NJ, Belotserkovskii BP et al (2005) The Saccharomyces cerevisiae Smc2/4 condensin compacts DNA into (+) chiral structures without net supercoiling. J Biol Chem 280:34723–34734. doi: 10.1074/jbc.M506589200 PubMedCrossRefGoogle Scholar
  102. Sutani T, Yanagida M (1997) DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature 388:798–801. doi: 10.1038/42062 PubMedCrossRefGoogle Scholar
  103. Sutani T, Yuasa T, Tomonaga T et al (1999) Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev 13:2271–2283PubMedCrossRefGoogle Scholar
  104. Tada K, Susumu H, Sakuno T, Watanabe Y (2011) Condensin association with histone H2A shapes mitotic chromosomes. Nature 474:477–483. doi: 10.1038/nature10179 PubMedCrossRefGoogle Scholar
  105. Takemoto A, Kimura K, Yokoyama S, Hanaoka F (2004) Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin. J Biol Chem 279:4551–4559. doi: 10.1074/jbc.M310925200 PubMedCrossRefGoogle Scholar
  106. Takemoto A, Kimura K, Yanagisawa J et al (2006) Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J 25:5339–5348. doi: 10.1038/sj.emboj.7601394 PubMedCrossRefGoogle Scholar
  107. Takemoto A, Murayama A, Katano M et al (2007) Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res 35:2403–2412. doi: 10.1093/nar/gkm157 PubMedCrossRefGoogle Scholar
  108. Takemoto A, Maeshima K, Ikehara T et al (2009) The chromosomal association of condensin II is regulated by a noncatalytic function of PP2A. Nat Struct Mol Biol 16:1302–1308. doi: 10.1038/nsmb.1708 PubMedCrossRefGoogle Scholar
  109. Tanaka A, Tanizawa H, Sriswasdi S et al (2012) Epigenetic regulation of condensin-mediated genome organization during the cell cycle and upon DNA Damage through histone H3 Lysine 56 acetylation. Mol Cell 48:532–546. doi: 10.1016/j.molcel.2012.09.011 PubMedCrossRefGoogle Scholar
  110. Trimborn M, Schindler D, Neitzel H, Hirano T (2006) Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II. Cell Cycle 5:322–326PubMedCrossRefGoogle Scholar
  111. Tsang CK, Wei Y, Zheng XFS (2007) Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle 6:2213–2218PubMedCrossRefGoogle Scholar
  112. Ubersax JA, Woodbury EL, Quang PN et al (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864. doi: 10.1038/nature02062 PubMedCrossRefGoogle Scholar
  113. Varela E, Shimada K, Laroche T et al (2009) Lte1, Cdc14 and MEN-controlled Cdk inactivation in yeast coordinate rDNA decompaction with late telophase progression. EMBO J 28:1562–1575. doi: 10.1038/emboj.2009.111 PubMedCrossRefGoogle Scholar
  114. Wang B-D, Yong-Gonzalez V, Strunnikov AV (2004) Cdc14p/FEAR pathway controls segregation of nucleolus in S. cerevisiae by facilitating condensin targeting to rDNA chromatin in anaphase. Cell Cycle 3:960–967PubMedGoogle Scholar
  115. Wang B-D, Eyre D, Basrai M et al (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25:7216–7225. doi: 10.1128/MCB.25.16.7216-7225.2005 PubMedCrossRefGoogle Scholar
  116. Wang Q, Mordukhova EA, Edwards AL, Rybenkov VV (2006) Chromosome condensation in the absence of the non-SMC subunits of MukBEF. J Bacteriol 188:4431–4441. doi: 10.1128/JB.00313-06 PubMedCrossRefGoogle Scholar
  117. Watrin E, Schleiffer A, Tanaka K et al (2006) Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol 16:863–874. doi: 10.1016/j.cub.2006.03.049 PubMedCrossRefGoogle Scholar
  118. Wood JL, Liang Y, Li K, Chen J (2008) Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J Biol Chem 283:29586–29592. doi: 10.1074/jbc.M804080200 PubMedCrossRefGoogle Scholar
  119. Wood AJ, Severson AF, Meyer BJ (2010) Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 11:391–404. doi: 10.1038/nrg2794 PubMedCrossRefGoogle Scholar
  120. Wu N, Yu H (2012) The Smc complexes in DNA damage response. Cell Biosci 2:5. doi: 10.1186/2045-3701-2-5 PubMedCrossRefGoogle Scholar
  121. Wysocka M, Rytka J, Kurlandzka A (2004) Saccharomyces cerevisiae CSM1 gene encoding a protein influencing chromosome segregation in meiosis I interacts with elements of the DNA replication complex. Exp Cell Res 294:592–602. doi: 10.1016/j.yexcr.2003.12.008 PubMedCrossRefGoogle Scholar
  122. Xing H, Wilkerson DC, Mayhew CN et al (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423. doi: 10.1126/science.1106478 PubMedCrossRefGoogle Scholar
  123. Xing H, Vanderford NL, Sarge KD (2008) The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action. Nat Cell Biol 10:1318–1323. doi: 10.1038/ncb1790 PubMedCrossRefGoogle Scholar
  124. Yamashita D, Shintomi K, Ono T et al (2011) MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J Cell Biol 194:841–854. doi: 10.1083/jcb.201106141 PubMedCrossRefGoogle Scholar
  125. Yanagida M (2009) Clearing the way for mitosis: is cohesin a target? Nat Rev Mol Cell Biol 10:489–496. doi: 10.1038/nrm2712 PubMedCrossRefGoogle Scholar
  126. Yeong FM, Hombauer H, Wendt KS et al (2003) Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr Biol 13:2058–2064PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Cell Biology and Biophysics Unit, Structural and Computational Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany

Personalised recommendations