Advertisement

Chromosoma

, Volume 122, Issue 1–2, pp 33–45 | Cite as

Impediments to replication fork movement: stabilisation, reactivation and genome instability

  • Sarah Lambert
  • Antony M. CarrEmail author
Review Article

Abstract

Maintaining genome stability is essential for the accurate transmission of genetic material. Genetic instability is associated with human genome disorders and is a near-universal hallmark of cancer cells. Genetic variation is also the driving force of evolution, and a genome must therefore display adequate plasticity to evolve while remaining sufficiently stable to prevent mutations and chromosome rearrangements leading to a fitness disadvantage. A primary source of genome instability are errors that occur during chromosome replication. More specifically, obstacles to the movement of replication forks are known to underlie many of the gross chromosomal rearrangements seen both in human cells and in model organisms. Obstacles to replication fork progression destabilize the replisome (replication protein complex) and impact on the integrity of forked DNA structures. Therefore, to ensure the successful progression of a replication fork along with its associated replisome, several distinct strategies have evolved. First, there are well-orchestrated mechanisms that promote continued movement of forks through potential obstacles. Second, dedicated replisome and fork DNA stabilization pathways prevent the dysfunction of the replisome if its progress is halted. Third, should stabilisation fail, there are mechanisms to ensure damaged forks are accurately fused with a converging fork or, when necessary, re-associated with the replication proteins to continue replication. Here, we review what is known about potential barriers to replication fork progression, how these are tolerated and their impact on genome instability.

Keywords

Replication fork barrier Fork arrest Fork collapse Chromosome rearrangement 

References

  1. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Molecular cell 46:115–124PubMedCrossRefGoogle Scholar
  2. Aguilera A, Gomez-Gonzalez B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9:204–217PubMedCrossRefGoogle Scholar
  3. Ahn JS, Osman F, Whitby MC (2005) Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24:2011–2023PubMedCrossRefGoogle Scholar
  4. Ansari A, Hampsey M (2005) A role for the CPF 3-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19:2969–2978PubMedCrossRefGoogle Scholar
  5. Arcangioli B, Klar AJ (1991) A novel switch-activating site (SAS1) and its cognate binding factor (SAP1) required for efficient mat1 switching in Schizosaccharomyces pombe. EMBO J 10:3025–3032PubMedGoogle Scholar
  6. Arlt MF, Wilson TE, Glover TW (2012) Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev 22:204–210PubMedCrossRefGoogle Scholar
  7. Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA (2006) The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 20:3104–3116PubMedCrossRefGoogle Scholar
  8. Azvolinsky A, Giresi PG, Lieb JD, Zakian VA (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Molecular cell 34:722–734PubMedCrossRefGoogle Scholar
  9. Bacolla A, Wojciechowska M, Kosmider B, Larson JE, Wells RD (2006) The involvement of non-B DNA structures in gross chromosomal rearrangements. DNA Repair 5:1161–1170PubMedCrossRefGoogle Scholar
  10. Bastia D, Singh SK (2011) “Chromosome kissing” and modulation of replication termination. Bioarchitecture 1:24–28PubMedCrossRefGoogle Scholar
  11. Bermejo R, Capra T, Jossen R, Colosio A, Frattini C, Carotenuto W, Cocito A, Doksani Y, Klein H, Gomez-Gonzalez B et al (2011) The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146:233–246PubMedCrossRefGoogle Scholar
  12. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446PubMedCrossRefGoogle Scholar
  13. Biswas S, Bastia D (2008) Mechanistic insights into replication termination as revealed by investigations of the Reb1-Ter3 complex of Schizosaccharomyces pombe. Mol Cell Biol 28:6844–6857PubMedCrossRefGoogle Scholar
  14. Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82:8527–8529PubMedCrossRefGoogle Scholar
  15. Blumrich A, Zapatka M, Brueckner LM, Zheglo D, Schwab M, Savelyeva L (2011) The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum Mol Genet 20:1488–1501PubMedCrossRefGoogle Scholar
  16. Bochman ML, Sabouri N, Zakian VA (2010) Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst) 9:237–249CrossRefGoogle Scholar
  17. Boubakri H, de Septenville AL, Viguera E, Michel B (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29:145–157PubMedCrossRefGoogle Scholar
  18. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219PubMedCrossRefGoogle Scholar
  19. Budzowska M, Kanaar R (2009) Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 53:17–31PubMedCrossRefGoogle Scholar
  20. Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–1052PubMedCrossRefGoogle Scholar
  21. Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC et al (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–773PubMedCrossRefGoogle Scholar
  22. Chen JD, Pirrotta V (1993) Multimerization of the Drosophila zeste protein is required for efficient DNA binding. EMBO J 12:2075–2083PubMedGoogle Scholar
  23. Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM (2003) DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 22:4325–4336PubMedCrossRefGoogle Scholar
  24. Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA, Gasser SM (2005) Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev 19:3055–3069PubMedCrossRefGoogle Scholar
  25. Cortes-Ledesma F, Aguilera A (2006) Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7:919–926PubMedCrossRefGoogle Scholar
  26. Costanzo V (2011) Brca2, Rad51 and Mre11: performing balancing acts on replication forks. DNA Repair 10:1060–1065PubMedCrossRefGoogle Scholar
  27. Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M (2005) Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Molecular cell 17:153–159PubMedCrossRefGoogle Scholar
  28. Dalgaard JZ, Klar AJ (2001) A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev 15:2060–2068PubMedCrossRefGoogle Scholar
  29. De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K (2012) Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Molecular cell 45:696–704PubMedCrossRefGoogle Scholar
  30. Debatisse M, Le Tallec B, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32PubMedCrossRefGoogle Scholar
  31. Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033PubMedCrossRefGoogle Scholar
  32. Doksani Y, Bermejo R, Fiorani S, Haber JE, Foiani M (2009) Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137:247–258PubMedCrossRefGoogle Scholar
  33. Dronkert ML, Kanaar R (2001) Repair of DNA interstrand cross-links. Mutat Res 486:217–247PubMedCrossRefGoogle Scholar
  34. Dubarry M, Loiodice I, Chen CL, Thermes C, Taddei A (2011) Tight protein–DNA interactions favor gene silencing. Genes Dev 25:1365–1370PubMedCrossRefGoogle Scholar
  35. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192PubMedCrossRefGoogle Scholar
  36. Durkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW (2008) Replication stress induces tumor-like microdeletions in FHIT/FRA3B. Proc Natl Acad Sci U S A 105:246–251PubMedCrossRefGoogle Scholar
  37. Egel R (2005) Fission yeast mating-type switching: programmed damage and repair. DNA Repair 4:525–536PubMedCrossRefGoogle Scholar
  38. Eydmann T, Sommariva E, Inagawa T, Mian S, Klar AJ, Dalgaard JZ (2008) Rtf1-mediated eukaryotic site-specific replication termination. Genetics 180:27–39PubMedCrossRefGoogle Scholar
  39. Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, Kanoh Y, Shirahige K, Azvolinsky A, Zakian VA, Foiani M (2010) Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 39:595–605PubMedCrossRefGoogle Scholar
  40. Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21:3331–3341PubMedCrossRefGoogle Scholar
  41. Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142PubMedCrossRefGoogle Scholar
  42. Goldfless SJ, Morag AS, Belisle KA, Sutera VA Jr, Lovett ST (2006) DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell 21:595–604PubMedCrossRefGoogle Scholar
  43. Gomez-Gonzalez B, Garcia-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marin A, Foiani M, Aguilera A (2011) Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J 30:3106–3119PubMedCrossRefGoogle Scholar
  44. Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R (2006) The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25:4921–4932PubMedCrossRefGoogle Scholar
  45. Hashash N, Johnson AL, Cha RS (2011) Regulation of fragile sites expression in budding yeast by MEC1, RRM3 and hydroxyurea. Journal of cell science 124:181–185PubMedCrossRefGoogle Scholar
  46. Hashash N, Johnson AL, Cha RS (2012) Topoisomerase II- and condensin-dependent breakage of MEC1ATR-sensitive fragile sites occurs independently of spindle tension, anaphase, or cytokinesis. PLoS Genetics 8:e1002978PubMedCrossRefGoogle Scholar
  47. Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562PubMedCrossRefGoogle Scholar
  48. Helmrich A, Stout-Weider K, Hermann K, Schrock E, Heiden T (2006) Common fragile sites are conserved features of human and mouse chromosomes and relate to large active genes. Genome Res 16:1222–1230PubMedCrossRefGoogle Scholar
  49. Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977PubMedCrossRefGoogle Scholar
  50. Hu J, Sun L, Shen F, Chen Y, Hua Y, Liu Y, Zhang M, Hu Y, Wang Q, Xu W et al (2012) The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell 149:1221–1232PubMedCrossRefGoogle Scholar
  51. Huang M, Kim JM, Shiotani B, Yang K, Zou L, D’Andrea AD (2010) The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell 39:259–268PubMedCrossRefGoogle Scholar
  52. Inagawa T, Yamada-Inagawa T, Eydmann T, Mian IS, Wang TS, Dalgaard JZ (2009) Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart. Proc Natl Acad Sci U S A 106:7927–7932PubMedCrossRefGoogle Scholar
  53. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein–DNA complexes. Molecular cell 12:1525–1536PubMedCrossRefGoogle Scholar
  54. Jiang Y, Lucas I, Young DJ, Davis EM, Karrison T, Rest JS, Le Beau MM (2009) Common fragile sites are characterized by histone hypoacetylation. Hum Mol Genet 18:4501–4512PubMedCrossRefGoogle Scholar
  55. Kaplan DL, Bastia D (2009) Mechanisms of polar arrest of a replication fork. Mol Microbiol 72:279–285PubMedCrossRefGoogle Scholar
  56. Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083PubMedCrossRefGoogle Scholar
  57. Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N (2011) Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41:543–553PubMedCrossRefGoogle Scholar
  58. Kelly TJ, Brown GW (2000) Regulation of chromosome replication. Annu Rev Biochem 69:829–880PubMedCrossRefGoogle Scholar
  59. Kim HM, Narayanan V, Mieczkowski PA, Petes TD, Krasilnikova MM, Mirkin SM, Lobachev KS (2008) Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J 27:2896–2906PubMedCrossRefGoogle Scholar
  60. Krasilnikova MM, Mirkin SM (2004) Replication stalling at Friedreich’s ataxia (GAA)n repeats in vivo. Mol Cell Biol 24:2286–2295PubMedCrossRefGoogle Scholar
  61. Labib K (2010) How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 24:1208–1219PubMedCrossRefGoogle Scholar
  62. Lambert S, Carr AM (2005) Checkpoint responses to replication fork barriers. Biochimie 87:591–602PubMedCrossRefGoogle Scholar
  63. Lambert S, Mason SJ, Barber LJ, Hartley JA, Pearce JA, Carr AM, McHugh PJ (2003) Schizosaccharomyces pombe checkpoint response to DNA interstrand cross-links. Mol Cell Biol 23:4728–4737PubMedCrossRefGoogle Scholar
  64. Lambert S, Watson A, Sheedy DM, Martin B, Carr AM (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121:689–702PubMedCrossRefGoogle Scholar
  65. Lambert S, Froget B, Carr AM (2007) Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair 6:1042–1061PubMedCrossRefGoogle Scholar
  66. Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, Freon K, Murray JM, Carr AM, Baldacci G (2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell 39:346–359PubMedCrossRefGoogle Scholar
  67. Le Tallec B, Dutrillaux B, Lachages AM, Millot GA, Brison O, Debatisse M (2011) Molecular profiling of common fragile sites in human fibroblasts. Nat Struct Mol Biol 18:1421–1423PubMedCrossRefGoogle Scholar
  68. Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:120–123PubMedCrossRefGoogle Scholar
  69. Lobachev KS, Shor BM, Tran HT, Taylor W, Keen JD, Resnick MA, Gordenin DA (1998) Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 148:1507–1524PubMedGoogle Scholar
  70. Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA (2000) Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 19:3822–3830PubMedCrossRefGoogle Scholar
  71. Lobachev KS, Rattray A, Narayanan V (2007) Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front Biosci 12:4208–4220PubMedCrossRefGoogle Scholar
  72. Long DT, Raschle M, Joukov V, Walter JC (2011) Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333:84–87PubMedCrossRefGoogle Scholar
  73. Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561PubMedCrossRefGoogle Scholar
  74. Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27PubMedCrossRefGoogle Scholar
  75. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30:4033–4046PubMedCrossRefGoogle Scholar
  76. Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC (2009) Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol Cell Biol 29:4742–4756PubMedCrossRefGoogle Scholar
  77. Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213PubMedCrossRefGoogle Scholar
  78. Lygeros J, Koutroumpas K, Dimopoulos S, Legouras I, Kouretas P, Heichinger C, Nurse P, Lygerou Z (2008) Stochastic hybrid modeling of DNA replication across a complete genome. Proc Natl Acad Sci U S A 105:12295–12300PubMedCrossRefGoogle Scholar
  79. McGlynn P (2011) Helicases that underpin replication of protein-bound DNA in Escherichia coli. Biochem Soc Trans 39:606–610PubMedCrossRefGoogle Scholar
  80. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799PubMedCrossRefGoogle Scholar
  81. Mechali M (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11:728–738PubMedCrossRefGoogle Scholar
  82. Minca EC, Kowalski D (2010) Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Molecular cell 38:649–661PubMedCrossRefGoogle Scholar
  83. Mirkin SM (2006) DNA structures, repeat expansions and human hereditary disorders. Curr Opin Struct Biol 16:351–358PubMedCrossRefGoogle Scholar
  84. Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35PubMedCrossRefGoogle Scholar
  85. Mizuno K, Lambert S, Baldacci G, Murray JM, Carr AM (2009) Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev 23:2876–2886PubMedCrossRefGoogle Scholar
  86. Mohanty BK, Bairwa NK, Bastia D (2006) The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103:897–902PubMedCrossRefGoogle Scholar
  87. Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397–408PubMedCrossRefGoogle Scholar
  88. Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, Kerem B (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43:122–131PubMedCrossRefGoogle Scholar
  89. Ozeri-Galai E, Bester AC, Kerem B (2012) The complex basis underlying common fragile site instability in cancer. Trends Genet 28:295–302PubMedCrossRefGoogle Scholar
  90. Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, Weinert T (2009) Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes Dev 23:2861–2875PubMedCrossRefGoogle Scholar
  91. Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691PubMedCrossRefGoogle Scholar
  92. Palakodeti A, Lucas I, Jiang Y, Young DJ, Fernald AA, Karrison T, Le Beau MM (2010) Impaired replication dynamics at the FRA3B common fragile site. Hum Mol Genet 19:99–110PubMedCrossRefGoogle Scholar
  93. Pelliccia F, Bosco N, Rocchi A (2010) Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562—molecular characterization of FRA2H and localization of a new CFS FRA2S. Cancer Lett 299:37–44PubMedCrossRefGoogle Scholar
  94. Petermann E, Helleday T (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11:683–687PubMedCrossRefGoogle Scholar
  95. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37:492–502PubMedCrossRefGoogle Scholar
  96. Pomerantz RT, O’Donnell M (2010) What happens when replication and transcription complexes collide? Cell Cycle 9:2537–2543PubMedCrossRefGoogle Scholar
  97. Possoz C, Filipe SR, Grainge I, Sherratt DJ (2006) Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J 25:2596–2604PubMedCrossRefGoogle Scholar
  98. Prado F, Aguilera A (2005) Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 24:1267–1276PubMedCrossRefGoogle Scholar
  99. Pryce DW, Ramayah S, Jaendling A, McFarlane RJ (2009) Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1. Proc Natl Acad Sci U S A 106:4770–4775PubMedCrossRefGoogle Scholar
  100. Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–423PubMedCrossRefGoogle Scholar
  101. Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, Zakian VA, Mergny JL, Nicolas A (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5:e1000475PubMedCrossRefGoogle Scholar
  102. Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727PubMedCrossRefGoogle Scholar
  103. Roseaulin L, Yamada Y, Tsutsui Y, Russell P, Iwasaki H, Arcangioli B (2008) Mus81 is essential for sister chromatid recombination at broken replication forks. EMBO J 27:1378–1387PubMedCrossRefGoogle Scholar
  104. Rozenzhak S, Mejia-Ramirez E, Williams JS, Schaffer L, Hammond JA, Head SR, Russell P (2010) Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-phase in fission yeast. PLoS Genet 6:e1001032PubMedCrossRefGoogle Scholar
  105. Sabouri N, McDonald KR, Webb CJ, Cristea IM, Zakian VA (2012) DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev 26:581–593PubMedCrossRefGoogle Scholar
  106. Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM (2009) Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol Cell 35:82–92PubMedCrossRefGoogle Scholar
  107. Sinden RR (1994) DNA structure and function. Academic, San Diego, xxiii, 398Google Scholar
  108. Singh SK, Sabatinos S, Forsburg S, Bastia D (2010) Regulation of replication termination by Reb1 protein-mediated action at a distance. Cell 142:868–878PubMedCrossRefGoogle Scholar
  109. Smith DI, McAvoy S, Zhu Y, Perez DS (2007) Large common fragile site genes and cancer. Semin Cancer Biol 17:31–41PubMedCrossRefGoogle Scholar
  110. Sofueva S, Osman F, Lorenz A, Steinacher R, Castagnetti S, Ledesma J, Whitby MC (2011) Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier. Nucleic Acids Res 39:6568–6584PubMedCrossRefGoogle Scholar
  111. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602PubMedCrossRefGoogle Scholar
  112. Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6:e1000810PubMedCrossRefGoogle Scholar
  113. Steinacher R, Osman F, Dalgaard JZ, Lorenz A, Whitby MC (2012) The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability. Genes Dev 26:594–602PubMedCrossRefGoogle Scholar
  114. Sun W, Nandi S, Osman F, Ahn JS, Jakovleska J, Lorenz A, Whitby MC (2008) The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol Cell 32:118–128PubMedCrossRefGoogle Scholar
  115. Szilard RK, Jacques PE, Laramee L, Cheng B, Galicia S, Bataille AR, Yeung M, Mendez M, Bergeron M, Robert F et al (2010) Systematic identification of fragile sites via genome-wide location analysis of gamma-H2AX. Nat Struct Mol Biol 17:299–305PubMedCrossRefGoogle Scholar
  116. Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557PubMedCrossRefGoogle Scholar
  117. Torres JZ, Bessler JB, Zakian VA (2004a) Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev 18:498–503PubMedCrossRefGoogle Scholar
  118. Torres JZ, Schnakenberg SL, Zakian VA (2004b) Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 24:3198–3212PubMedCrossRefGoogle Scholar
  119. Tsang E, Carr AM (2008) Replication fork arrest, recombination and the maintenance of ribosomal DNA stability. DNA Repair 7:1613–1623PubMedCrossRefGoogle Scholar
  120. Ulrich HD (2011) Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett 585:2861–2867PubMedCrossRefGoogle Scholar
  121. Vazquez MV, Rojas V, Tercero JA (2008) Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA. DNA Repair 7:1693–1704PubMedCrossRefGoogle Scholar
  122. Voineagu I, Narayanan V, Lobachev KS, Mirkin SM (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci U S A 105:9936–9941PubMedCrossRefGoogle Scholar
  123. Wang JD, Berkmen MB, Grossman AD (2007) Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 104:5608–5613PubMedCrossRefGoogle Scholar
  124. Weinert T, Kaochar S, Jones H, Paek A, Clark AJ (2009) The replication fork’s five degrees of freedom, their failure and genome rearrangements. Curr Opin Cell Biol 21:778–784PubMedCrossRefGoogle Scholar
  125. Wells RD (2008) DNA triplexes and Friedreich ataxia. FASEB J 22:1625–1634PubMedCrossRefGoogle Scholar
  126. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173:673–683PubMedCrossRefGoogle Scholar
  127. Yeeles JT, Marians KJ (2011) The Escherichia coli replisome is inherently DNA damage tolerant. Science 334:235–238PubMedCrossRefGoogle Scholar
  128. Zahn KE, Wallace SS, Doublie S (2011) DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Curr Opin Struct Biol 21:358–369PubMedCrossRefGoogle Scholar
  129. Zhang H, Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27:367–379PubMedCrossRefGoogle Scholar
  130. Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R, Levi A, Scherer SW, Margalit H, Kerem B (2003) Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 23:7143–7151PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut CurieOrsayFrance
  2. 2.Centre National de la Recherche Scientifique, UMR3348, Centre Universitaire, Paris Sud XIOrsayFrance
  3. 3.Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations