Advertisement

Chromosoma

, Volume 120, Issue 5, pp 501–520 | Cite as

Transcriptomic and nuclear architecture of immune cells after LPS activation

  • Romain Solinhac
  • Florence Mompart
  • Pascal Martin
  • David Robelin
  • Philippe Pinton
  • Eddie Iannuccelli
  • Yvette Lahbib-Mansais
  • Isabelle P. Oswald
  • Martine Yerle-BouissouEmail author
Research Article

Abstract

Changes in the nuclear positioning of specific genes, depending on their expression status, have been observed in a large diversity of physiological processes. However, gene position is poorly documented for immune cells which have been subjected to activation following bacterial infection. Using a pig model, we focused our study on monocyte-derived macrophages and neutrophils, as they are the first lines of defence against pathogens. We examined whether changes in gene expression due to LPS activation imply that genes have repositioned in the nuclear space. We first performed a transcriptomic analysis to identify the differentially expressed genes and then analysed the networks involved during lypopolysaccharide/interferon gamma activation in monocyte-derived macrophages. This allowed us to select four up-regulated (IL1β, IL8, CXCL10 and TNFα) and four down-regulated (VIM, LGALS3, TUBA3 and IGF2) genes. Their expression statuses were verified by quantitative real-time RT-PCR before studying their behaviour in the nuclear space during macrophage activation by means of 3D fluorescence in situ hybridization. No global correlation was found between gene activity and radial positioning. Only TNFα belonging to the highly transcribed MHC region on chromosome 7 became more peripherally localized in relation to the less decondensed state of its chromosome territory (CT) in activated macrophages. The analysis of gene positioning towards their CT revealed that IL8 increases significantly its tendency to be outside its CT during the activation process. In addition, the gene to CT edge distances increase for the three up-regulated genes (IL8, CXCL10 and TNFα) among the four analysed. Contrarily, the four down-regulated genes did not change their position. The analysis of gene behaviour towards their CT was extended to include neutrophils for three (TNFα, IL8 and IL1β) up- and two (IGF2 and TUBA3) down-regulated genes, and similar results were obtained. The analysis was completed by studying the four up-regulated genes in fibroblasts, not involved in immune response. Our data suggest that relocation in the nuclear space of genes that are differentially expressed in activated immune cells is gene and cell type specific but also closely linked to the entire up-regulation status of their chromosomal regions.

Keywords

Ingenuity Pathway Analysis Radial Position Nuclear Periphery Chromosome Territory Saline Sodium Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Agnès Bonnet for the technical advice on neutrophil RNA analyses, for the helpful discussions on transcriptome analysis and for critically reading the manuscript. The authors would like to thank the CRB-GADIE (INRA, UMR GABI, France) for providing the BAC clones. We are grateful to A. Jauneau and C. Pouzet for their help and the use of the IFR40 platform for confocal microscopy facility. This work was supported by a grant to Romain Solinhac from the French Ministère de l'Education Nationale, de la Recherche et de la Technologie and by a complementary grant from INRA (Animal Genetics and Animal Health Departments).

Supplementary material

412_2011_328_Fig9_ESM.jpg (95 kb)
Supplementary Fig. 1

(JPEG 95 kb)

412_2011_328_MOESM1_ESM.tif (824 kb)
High resolution image (TIFF 824 kb)
412_2011_328_Fig10_ESM.jpg (68 kb)
Supplementary Fig. 2

(JPEG 68 kb)

412_2011_328_MOESM2_ESM.tif (1.4 mb)
High resolution image (TIFF 1444 kb)
412_2011_328_Fig11_ESM.jpg (125 kb)
Supplementary Fig. 3

(JPEG 124 kb)

412_2011_328_MOESM3_ESM.tif (2.9 mb)
High resolution image (TIFF 2953 kb)
412_2011_328_Fig12_ESM.jpg (69 kb)
Supplementary Fig. 4

(JPEG 68 kb)

412_2011_328_MOESM4_ESM.tif (213 kb)
High resolution image (TIFF 213 kb)
412_2011_328_Fig13_ESM.jpg (92 kb)
Supplementary Fig. 5

(JPEG 92 kb)

412_2011_328_MOESM5_ESM.tif (416 kb)
High resolution image (TIFF 416 kb)
412_2011_328_Fig14_ESM.jpg (110 kb)
Supplementary Fig. 6

(JPEG 109 kb)

412_2011_328_MOESM6_ESM.tif (455 kb)
High resolution image (TIFF 455 kb)
412_2011_328_MOESM7_ESM.doc (63 kb)
Supplementary Table 1 (DOC 63 kb)
412_2011_328_MOESM8_ESM.doc (154 kb)
Supplementary Table 2 (DOC 154 kb)
412_2011_328_MOESM9_ESM.doc (110 kb)
Supplementary Table 3 (DOC 109 kb)
412_2011_328_MOESM10_ESM.doc (30 kb)
Supplementary Table 4 (DOC 30 kb)

References

  1. Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8:507–517PubMedCrossRefGoogle Scholar
  2. Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MAM, Harlizius B, Lee K-T, Milan D, Rogers J, Rothschild MF, Uenishi H, Wang J, Schook LB, Consortium SGS (2010) Pig genome sequence-analysis and publication strategy. BMC Genomics 11:438PubMedCrossRefGoogle Scholar
  3. Bártová E, Kozubek S, Jirsová P, Kozubek M, Gajová H, Lukásová E, Skalníková M, Ganová A, Koutná I, Hausmann M (2002) Nuclear structure and gene activity in human differentiated cells. J Struct Biol 139:76–89PubMedCrossRefGoogle Scholar
  4. Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA (2002) Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 99:972–977PubMedCrossRefGoogle Scholar
  5. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160PubMedCrossRefGoogle Scholar
  6. Brown CR, Silver PA (2007) Transcriptional regulation at the nuclear pore complex. Curr Opin Genet Dev 17:100–106PubMedCrossRefGoogle Scholar
  7. Brown JM, Green J, das Neves RP, Wallace HAC, Smith AJH, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182:1083–1097PubMedCrossRefGoogle Scholar
  8. Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P, Hermus MC, van Asperen R, Boon K, Voûte PA, Heisterkamp S, van Kampen A, Versteeg R (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291:1289–1292PubMedCrossRefGoogle Scholar
  9. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439PubMedCrossRefGoogle Scholar
  10. Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130PubMedCrossRefGoogle Scholar
  11. Chambeyron S, Silva NRD, Lawson KA, Bickmore WA (2005) Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132:2215–2223PubMedCrossRefGoogle Scholar
  12. Christova R, Jones T, Wu P-J, Bolzer A, Costa-Pereira AP, Watling D, Kerr IM, Sheer D (2007) P-STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFNgamma. J Cell Sci 120:3262–3270PubMedCrossRefGoogle Scholar
  13. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301PubMedCrossRefGoogle Scholar
  14. Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316PubMedCrossRefGoogle Scholar
  15. Detweiler CS, Cunanan DB, Falkow S (2001) Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci USA 98:5850–5855PubMedCrossRefGoogle Scholar
  16. R Development Core Team (2005) R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  17. Devriendt B, Gallois M, Verdonck F, Wache Y, Bimczok D, Oswald IP, Goddeeris BM, Cox E (2009) The food contaminant fumonisin B(1) reduces the maturation of porcine CD11R1(+) intestinal antigen presenting cells and antigen-specific immune responses, leading to a prolonged intestinal ETEC infection. Vet Res 40:40PubMedCrossRefGoogle Scholar
  18. Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252:363–375PubMedCrossRefGoogle Scholar
  19. Federico C, Cantarella CD, Mare PD, Tosi S, Saccone S (2008) The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density. Chromosoma 117:399–410PubMedCrossRefGoogle Scholar
  20. Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039PubMedCrossRefGoogle Scholar
  21. Gao Y, Flori L, Lecardonnel J, Esquerré D, Hu ZL, Teillaud A, Lemonnier G, Lefèvre F, Oswald IP, Rogel-Gaillard C (2010) Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response. BMC Genomics 11:292PubMedCrossRefGoogle Scholar
  22. Ge S, Danino V, He Q, Hinton JCD, Granfors K (2010) Microarray analysis of response of Salmonella during infection of HLA-B27- transfected human macrophage-like U937 cells. BMC Genomics 11:456PubMedCrossRefGoogle Scholar
  23. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661PubMedCrossRefGoogle Scholar
  24. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80PubMedCrossRefGoogle Scholar
  25. Gué M, Messaoudi C, Sun JS, Boudier T (2005) Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing. Cytometry 67:18–26PubMedCrossRefGoogle Scholar
  26. Harnicarová A, Kozubek S, Pacherník J, Krejci J, Bártová E (2006) Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells. Exp Cell Res 312:4019–4035PubMedCrossRefGoogle Scholar
  27. Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008) Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma 117:535–551PubMedCrossRefGoogle Scholar
  28. Hepperger C, Mayer A, Merz J, Vanderwall DK, Dietzel S (2009) Parental genomes mix in mule and human cell nuclei. Chromosoma 118:335–347PubMedCrossRefGoogle Scholar
  29. Iannuccelli E, Mompart F, Gellin J, Lahbib-Mansais Y, Yerle M, Boudier T (2010) NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments. Bioinformatics 26:696–697PubMedCrossRefGoogle Scholar
  30. Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3:281–294PubMedCrossRefGoogle Scholar
  31. Kawano M, Thet MM, Makino T, Kushida T, Sakagami H (2010) DNA microarray analysis of signaling pathway in macrophages stimulated by lignin-carbohydrate complex from lentinus edodes mycelia (LEM) extract. Anticancer Res 30:2567–2576PubMedGoogle Scholar
  32. Kocanova S, Kerr EA, Rafique S, Boyle S, Katz E, Caze-Subra S, Bickmore WA, Bystricky K (2010) Activation of estrogen-responsive genes does not require their nuclear co-localization. PLoS Genet 6:e1000922PubMedCrossRefGoogle Scholar
  33. Kosak ST, Skok JA, Medina KL, Riblet R, Beau MML, Fisher AG, Singh H (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296:158–162PubMedCrossRefGoogle Scholar
  34. Koutná I, Krontorád P, Svoboda Z, Bártová E, Kozubek M, Kozubek S (2007) New insights into gene positional clustering and its properties supported by large-scale analysis of various differentiation pathways. Genomics 89:81–88PubMedCrossRefGoogle Scholar
  35. Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, Galande S (2007) Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 9:45–56PubMedCrossRefGoogle Scholar
  36. Kumaran RI, Spector DL (2008) A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 180:51–65PubMedCrossRefGoogle Scholar
  37. Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116:285–306PubMedCrossRefGoogle Scholar
  38. Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135:1195–1205PubMedCrossRefGoogle Scholar
  39. Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115PubMedCrossRefGoogle Scholar
  40. Litten-Brown JC, Corson AM, Clarke L (2010) Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 4:899–920CrossRefGoogle Scholar
  41. Lunney JK, Ho CS, Wysocki M, Smith DM (2009) Molecular genetics of the swine major histocompatibility complex, the SLA complex. Dev Comp Immunol 33:362–374PubMedCrossRefGoogle Scholar
  42. Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT (2003) Regulation of macrophage activation. Cell Mol Life Sci 60:2334–2346PubMedCrossRefGoogle Scholar
  43. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157:579–589PubMedCrossRefGoogle Scholar
  44. Malcolm KC, Arndt PG, Manos EJ, Jones DA, Worthen GS (2003) Microarray analysis of lipopolysaccharide-treated human neutrophils. Am J Physiol Lung Cell Mol Physiol 284:L663–L670PubMedGoogle Scholar
  45. Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44PubMedCrossRefGoogle Scholar
  46. Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180:39–50PubMedCrossRefGoogle Scholar
  47. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800PubMedCrossRefGoogle Scholar
  48. Morey C, Kress C, Bickmore WA (2009) Lack of bystander activation shows that localization exterior to chromosome territories is not sufficient to up-regulate gene expression. Genome Res 19:1184–1194PubMedCrossRefGoogle Scholar
  49. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182PubMedCrossRefGoogle Scholar
  50. Nau GJ, Richmond JFL, Schlesinger A, Jennings EG, Lander ES, Young RA (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 99:1503–1508PubMedCrossRefGoogle Scholar
  51. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071PubMedCrossRefGoogle Scholar
  52. Ottaviani D, Lever E, Mitter R, Jones T, Forshew T, Christova R, Tomazou EM, Rakyan VK, Krawetz SA, Platts AE, Segarane B, Beck S, Sheer D (2008) Reconfiguration of genomic anchors upon transcriptional activation of the human major histocompatibility complex. Genome Res 18:1778–1786PubMedCrossRefGoogle Scholar
  53. Pai DA, Engelke DR (2010) Spatial organization of genes as a component of regulated expression. Chromosoma 119:13–25PubMedCrossRefGoogle Scholar
  54. Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432PubMedCrossRefGoogle Scholar
  55. Ragoczy T, Bender MA, Telling A, Byron R, Groudine M (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457PubMedCrossRefGoogle Scholar
  56. Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–247PubMedCrossRefGoogle Scholar
  57. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375PubMedCrossRefGoogle Scholar
  58. Sadoni N, Targosz B-S, Englmann A, Fesser S, Koch J, Schindelhauer D, Zink D (2008) Transcription-dependent spatial arrangements of CFTR and conserved adjacent loci are not conserved in human and murine nuclei. Chromosoma 117:381–397PubMedCrossRefGoogle Scholar
  59. Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301:266–279PubMedCrossRefGoogle Scholar
  60. Sexton T, Schober H, Fraser P, Gasser SM (2007) Gene regulation through nuclear organization. Nat Struct Mol Biol 14:1049–1055PubMedCrossRefGoogle Scholar
  61. Sklar MD, Tereba A, Chen BD, Walker WS (1985) Transformation of mouse bone marrow cells by transfection with a human oncogene related to c-myc is associated with the endogenous production of macrophage colony stimulating factor 1. J Cell Physiol 125:403–412PubMedCrossRefGoogle Scholar
  62. Smith JD, Peng DQ, Dansky HM, Settle M, Baglione J, Goff WL, Chakrabarti E, Xu Y, Peng X (2006) Transcriptome profile of macrophages from atherosclerosis-sensitive and atherosclerosis-resistant mice. Mamm Genome 17:220–229PubMedCrossRefGoogle Scholar
  63. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3Google Scholar
  64. Soutoglou E, Misteli T (2007) Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev 17:435–442PubMedCrossRefGoogle Scholar
  65. Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44PubMedCrossRefGoogle Scholar
  66. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550PubMedCrossRefGoogle Scholar
  67. Szczerbal I, Bridger JM (2010) Association of adipogenic genes with SC-35 domains during porcine adipogenis. Chromosome Res 18:887–895PubMedCrossRefGoogle Scholar
  68. Szczerbal I, Foster HA, Bridger JM (2009) The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 118:647–663PubMedCrossRefGoogle Scholar
  69. Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99:4424–4429PubMedCrossRefGoogle Scholar
  70. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A, Ran R, Gregg JP, Reilly M, Pancioli A, Khoury JC, Sauerbeck LR, Carrozzella JA, Spilker J, Clark J, Wagner KR, Jauch EC, Chang DJ, Verro P, Broderick JP, Sharp FR (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26:1089–1102PubMedCrossRefGoogle Scholar
  71. Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576PubMedGoogle Scholar
  72. Wells CA, Ravasi T, Faulkner GJ, Carninci P, Okazaki Y, Hayashizaki Y, Sweet M, Wainwright BJ, Hume DA (2003) Genetic control of the innate immune response. BMC Immunol 4:5PubMedCrossRefGoogle Scholar
  73. Williams RRE, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272:163–175PubMedCrossRefGoogle Scholar
  74. Xiao S, Jia J, Mo D, Wang Q, Qin L, He Z, Zhao X, Huang Y, Li A, Yu J, Niu Y, Liu X, Chen Y (2010) Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS One 5:e11377PubMedCrossRefGoogle Scholar
  75. Yerle M, Schmitz A, Milan D, Chaput B, Monteagudo L, Vaiman M, Frelat G, Gellin J (1993) Accurate characterization of porcine bivariate flow karyotype by PCR and fluorescence in situ hybridization. Genomics 16:97–103PubMedCrossRefGoogle Scholar
  76. Yerle M, Goureau A, Gellin J, Tissier PL, Moran C (1994) Rapid mapping of cosmid clones on pig chromosomes by fluorescence in situ hybridization. Mamm Genome 5:34–37PubMedCrossRefGoogle Scholar
  77. Yerle-Bouissou M, Mompart F, Iannuccelli E, Robelin D, Jauneau A, Lahbib-Mansais Y, Delcros C, Oswald IP, Gellin J (2009) Nuclear architecture of resting and LPS-stimulated porcine neutrophils by 3D FISH. Chromosome Res 17:847–862PubMedCrossRefGoogle Scholar
  78. Zhang F, Hopwood P, Abrams CC, Downing A, Murray F, Talbot R, Archibald A, Lowden S, Dixon LK (2006) Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J Virol 80:10514–10521PubMedCrossRefGoogle Scholar
  79. Zhang S, Kim CC, Batra S, McKerrow JH, Pn L (2010) Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines. PLoS Negl Trop Dis 4:e648PubMedCrossRefGoogle Scholar
  80. Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166:815–825PubMedCrossRefGoogle Scholar

Copyright information

© tasSpringer-Verlag 2011

Authors and Affiliations

  • Romain Solinhac
    • 1
    • 2
  • Florence Mompart
    • 1
  • Pascal Martin
    • 2
  • David Robelin
    • 1
  • Philippe Pinton
    • 2
  • Eddie Iannuccelli
    • 1
  • Yvette Lahbib-Mansais
    • 1
  • Isabelle P. Oswald
    • 2
  • Martine Yerle-Bouissou
    • 1
    Email author
  1. 1.UMR 444 INRA/ENVT Laboratoire de Génétique CellulaireINRACastanet-TolosanFrance
  2. 2.UMR 1331 ToxAlimINRAToulouseFrance

Personalised recommendations