, Volume 119, Issue 5, pp 553–563 | Cite as

Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres

  • Wenli Zhang
  • Bernd Friebe
  • Bikram S. Gill
  • Jiming JiangEmail author
Research Article


A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.


Wheat Chromosome Dicentric Chromosome Pericentromeric Heterochromatin Pachytene Chromosome Centromeric Chromatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Yufeng Wu for statistical analysis of the data in Table 2 and Dr. Kelly Dawe for his comments on the manuscript. This research was partially supported by grants DBI-0603927 and DBI-0553417 from the National Science Foundation.

Supplementary material

412_2010_278_Fig10_ESM.gif (146 kb)
Supplementary Fig. 1

Distribution of H3K27me3 on wheat chromosomes. a H3K27me3 immunofluorescence (red) pattern of a metaphase cell from a plant containing a single mi7BStri chromosome (arrow). b Sequential immunofluorescence assay using anti-CENH3 antibodies (green). The faint green signals at the distal ends of the chromosomes, an example pointed by the arrowhead, were derived from H3K27me3. The H3K27me3 signals were not completely washed off after the first round of immunofluorescence assay. Bar = 10 μm. (GIF 145 kb)

412_2010_278_MOESM1_ESM.tif (4.4 mb)
High-resolution image (TIFF 4543 kb)


  1. Agudo M, Abad JP, Molina I, Losada A, Ripoll P, Villasante A (2000) A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109:190–196CrossRefPubMedGoogle Scholar
  2. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937CrossRefPubMedGoogle Scholar
  3. Alonso A, Mahmood R, Li SL, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721CrossRefPubMedGoogle Scholar
  4. Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KHA (2004) Human centromere repositioning “in progress”. Proc Nat Acad Sci USA 101:6542–6547CrossRefPubMedGoogle Scholar
  5. Capozzi O, Purgato S, D'Addabbo P, Archidiacono N, Battaglia P, Baroncini A, Capucci A, Stanyon R, Della Valle G, Rocchi M (2009) Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. Genome Res 19:778–784CrossRefPubMedGoogle Scholar
  6. Cardone MF, Alonso A, Pazienza M, Ventura M, Montemurro G, Carbone L, de Jong PJ, Stanyon R, D'Addabbo P, Archidiacono N, She XW, Eichler EE, Warburton PE, Rocchi M (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7:R91CrossRefPubMedGoogle Scholar
  7. Cheng ZK, Dong F, Langdon T, Ouyang S, Buell CB, Gu MH, Blattner FR, Jiang JM (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704CrossRefPubMedGoogle Scholar
  8. Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92:290–296CrossRefPubMedGoogle Scholar
  9. Ferreri GC, Liscinsky DM, Mack JA, Eldridge MDB, O'Neill RJ (2005) Retention of latent centromeres in the mammalian genome. J Hered 96:217–224CrossRefPubMedGoogle Scholar
  10. Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci 11:199–208CrossRefPubMedGoogle Scholar
  11. Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839Google Scholar
  12. Gross M, Starke H, Trifonov V, Claussen U, Liehr T, Weise A (2006) A molecular cytogenetic study of chromosome evolution in chimpanzee. Cytogenet Genome Res 112:67–75CrossRefPubMedGoogle Scholar
  13. Han FP, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Nat Acad Sci USA 103:3238–3243CrossRefPubMedGoogle Scholar
  14. Han FP, Gao Z, Birchler JA (2009a) Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell 21:1929–1939CrossRefPubMedGoogle Scholar
  15. Han YH, Zhang ZH, Liu CX, Liu JH, Huang SW, Jiang JM, Jin WW (2009b) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Nat Acad Sci USA 106:14937–14941CrossRefPubMedGoogle Scholar
  16. Houben A, Wako T, Furushima-Shimogawara R, Presting G, Kunzel G, Schubert I, Fukui K (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 18:675–679CrossRefPubMedGoogle Scholar
  17. Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, Choo KHA, Saffery R (2004) Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 12:805–815CrossRefPubMedGoogle Scholar
  18. Jiang JM, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491CrossRefPubMedGoogle Scholar
  19. Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113:3217–3226PubMedGoogle Scholar
  20. Koo DH, Jiang JM (2009) Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation. Plant J 59:509–516CrossRefPubMedGoogle Scholar
  21. Liu Z, Yue W, Li DY, Wang RRC, Kong XY, Lu K, Wang GX, Dong YS, Jin WW, Zhang XY (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456CrossRefPubMedGoogle Scholar
  22. Lo AW, Craig JM, Saffery R, Kalitsis P, Irvine DV, Earle E, Magliano DJ, Choo KH (2001a) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–2096CrossRefPubMedGoogle Scholar
  23. Lo AWI, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KHA (2001b) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457CrossRefPubMedGoogle Scholar
  24. Manzanero S, Arana P, Puertas MJ, Houben A (2000) The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma 109:308–317CrossRefPubMedGoogle Scholar
  25. Marshall OJ, Chueh AC, Wong LH, Choo KHA (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282CrossRefPubMedGoogle Scholar
  26. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849CrossRefPubMedGoogle Scholar
  27. McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 25:405–416CrossRefPubMedGoogle Scholar
  28. McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282PubMedGoogle Scholar
  29. Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623PubMedGoogle Scholar
  30. Montefalcone G, Tempesta S, Rocchi M, Archidiacono N (1999) Centromere repositioning. Genome Res 9:1184–1188CrossRefPubMedGoogle Scholar
  31. Nagaki K, Cheng ZK, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang JM (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145CrossRefPubMedGoogle Scholar
  32. Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522CrossRefPubMedGoogle Scholar
  33. Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847CrossRefPubMedGoogle Scholar
  34. Nath J, Tucker JD, Hando JC (1995) Y chromosome aneuploidy, micronuclei, kinetochores and aging in men. Chromosoma 103:725–731CrossRefPubMedGoogle Scholar
  35. Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24:1418–1429CrossRefPubMedGoogle Scholar
  36. Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728CrossRefPubMedGoogle Scholar
  37. Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin GJP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16, 000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712CrossRefPubMedGoogle Scholar
  38. Sears ER, Camara A (1952) A transmissible discentric chromosome. Genetics 37:125–135PubMedGoogle Scholar
  39. Stanyon R, Rocchi M, Capozzi O, Roberto R, Misceo D, Ventura M, Cardone MF, Bigoni F, Archidiacono N (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res 16:17–39CrossRefPubMedGoogle Scholar
  40. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083CrossRefPubMedGoogle Scholar
  41. Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4:2189–2197CrossRefPubMedGoogle Scholar
  42. Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228CrossRefPubMedGoogle Scholar
  43. Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL, Dawe RK (2009) Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res 124:228–238CrossRefPubMedGoogle Scholar
  44. Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:855–866CrossRefGoogle Scholar
  45. Ventura M, Archidiacono N, Rocchi M (2001) Centromere emergence in evolution. Genome Res 11:595–599CrossRefPubMedGoogle Scholar
  46. Ventura M, Antonacci F, Cardone MF, Stanyon R, D'Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246CrossRefPubMedGoogle Scholar
  47. Voullaire LE, Slater HR, Petrovic V, Choo KHA (1993) A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52:1153–1163PubMedGoogle Scholar
  48. Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Nat Acad Sci USA 95:7480–7484CrossRefPubMedGoogle Scholar
  49. Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18:30–37CrossRefPubMedGoogle Scholar
  50. Wong NC, Wong LH, Quach JM, Canham P, Craig JM, Song JZ, Clark SJ, Choo KHA (2006) Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation. PLoS Genet 2:172–186CrossRefGoogle Scholar
  51. Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530CrossRefPubMedGoogle Scholar
  52. Zhang XY, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:1026–1035Google Scholar
  53. Zhang WL, Lee HR, Koo DH, Jiang JM (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Wenli Zhang
    • 1
  • Bernd Friebe
    • 2
  • Bikram S. Gill
    • 2
  • Jiming Jiang
    • 1
    Email author
  1. 1.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Plant Pathology, Wheat Genetic and Genomic Resources CenterKansas State UniversityManhattanUSA

Personalised recommendations