, Volume 119, Issue 3, pp 227–241

SUV39h-independent association of HP1β with fibrillarin-positive nucleolar regions

  • Andrea Harničarová Horáková
  • Eva Bártová
  • Gabriela Galiová
  • Radka Uhlířová
  • Pavel Matula
  • Stanislav Kozubek


Heterochromatin protein 1 (HP1), which binds to sites of histone H3 lysine 9 (H3K9) methylation, is primarily responsible for gene silencing and the formation of heterochromatin. We observed that HP1β is located in both the chromocenters and fibrillarin-positive nucleoli interiors. However, HP1α and HP1γ occupied fibrillarin-positive compartments to a lesser extent, corresponding to the distinct levels of HP1 subtypes at the promoter of rDNA genes. Deficiency of histone methyltransferases SUV39h and/or inhibition of histone deacetylases (HDACi) decreased HP1β and H3K9 trimethylation at chromocenters, but not in fibrillarin-positive regions that co-localized with RNA polymerase I. Similarly, SUV39h- and HDACi-dependent nucleolar rearrangement and inhibition of rDNA transcription did not affect the association between HP1β and fibrillarin. Moreover, the presence of HP1β in nucleoli is likely connected with transcription of ribosomal genes and with the role of fibrillarin in nucleolar processes.









Bovine serum albumin




C-terminal chromoshadow domain


Dulbecco's modified Eagle's medium


Double null


DNA methyltransferase


Fluorescein isothiocyanate


Green fluorescence protein




Histone H3

H1, H2A, H2B, H4

histones H1, H2A, H2B, H4


Histone deacetylases


Histone methyltransferases


Heterochromatin protein 1

K (K4, K9, K27...)



Mouse embryonic fibroblasts


Methyl CpG-binding protein


Phosphate-buffered saline


Promyelocytic leukemia bodies


Room temperature


RNA polymerase I


Small nucleolar RNAs


Wild type


Trichostatin A


  1. Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J Cell Biol 143:1763–1774CrossRefPubMedGoogle Scholar
  2. Allis CD, Ziegler YS, Gorovsky MA, Olmsted JB (1982) A conserved histone variant enriched in nucleoli of mammalian cells. Cell 31:131–136CrossRefPubMedGoogle Scholar
  3. Alvarez M, Quezada C, Molina A, Krauskopf M, Vera MI, Thiry M (2006) Ultrastructural changes of the carp (Cyprinus carpio) hepatocyte nucleolus during seasonal acclimatization. Biol Cell 98:457–463CrossRefPubMedGoogle Scholar
  4. Bártová E, Pacherník J, Harničarová A, Kovařík A, Kovaříková M, Hofmanová J, Skalníková M, Kozubek M, Kozubek S (2005) Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci 118:5035–5046CrossRefPubMedGoogle Scholar
  5. Bártová E, Pacherník J, Kozubík A, Kozubek S (2007) Differentiation-specific association of HP1alpha and HP1beta with chromocentres is correlated with clustering of TIF1β at these sites. Histochem Cell Biol 127:375–388CrossRefPubMedGoogle Scholar
  6. Bártová E, Galiová G, Krejčí J, Harničarová A, Strašák L, Kozubek S (2008) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Differentiation 76:24–32PubMedGoogle Scholar
  7. Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–858CrossRefPubMedGoogle Scholar
  8. Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R (2002) Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 115:3439–3448PubMedGoogle Scholar
  9. Chen HK, Pai CY, Huang JY, Yeh NH (1999) Human Nopp 140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol 19:8536–8546PubMedGoogle Scholar
  10. Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299:721–725CrossRefPubMedGoogle Scholar
  11. Dundr M, Raška I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208:275–281CrossRefPubMedGoogle Scholar
  12. Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927CrossRefPubMedGoogle Scholar
  13. Erard MS, Belenguer P, Caizergues-Ferrer M, Pantaloni A, Amalric F (1988) A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur J Biochem 175:525–530CrossRefPubMedGoogle Scholar
  14. Espada J, Ballestar E, Santoro R, Fraga MF, Villar-Garea A, Németh A, Lopez-Serra L, Ropero S, Aranda A, Orozco H, Moreno V, Juarranz A, Stockert JC, Längst G, Grummt I, Bickmore W, Esteller M (2007) Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res 35:2191–2198CrossRefPubMedGoogle Scholar
  15. Festenstein R, Pagakis SN, Hiragami K, Lyon D, Verreault A, Sekkali B, Kioussis D (2003) Modulation of heterochromatin protein 1 dynamics in primary Mammalian cells. Science 299:719–721CrossRefPubMedGoogle Scholar
  16. Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309–313CrossRefPubMedGoogle Scholar
  17. Harničarová Horáková A, Galiová G, Legartová S, Kozubek S, Matula P, Bártová E (2009) Chromocentre integrity and epigenetic marks. J Struct Biol (in press)Google Scholar
  18. Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 116:3327–3338CrossRefPubMedGoogle Scholar
  19. Hozák P, Cook PR, Schöfer C, Mosgöller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107(Pt 2):639–648Google Scholar
  20. James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872PubMedGoogle Scholar
  21. Jansen RP, Hurt EC, Kern H, Lehtonen H, Carmo-Fonseca M, Lapeyre B, Tollervey D (1991) Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J Cell Biol 113:715–729CrossRefPubMedGoogle Scholar
  22. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  23. Lachner M, O'Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124CrossRefPubMedGoogle Scholar
  24. Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115CrossRefPubMedGoogle Scholar
  25. Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 15:6701–6715PubMedGoogle Scholar
  26. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200CrossRefPubMedGoogle Scholar
  27. Leung AK, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M, Lamond AI (2006) NOPdb: nucleolar proteome database. Nucleic Acids Res 34:D218–D220 (Database issue)CrossRefPubMedGoogle Scholar
  28. Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–304CrossRefPubMedGoogle Scholar
  29. McKeown PC, Shaw PJ (2009) Chromatin: linking structure and function in the nucleolus. Chromosoma 118:11–23CrossRefPubMedGoogle Scholar
  30. McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157CrossRefPubMedGoogle Scholar
  31. Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234CrossRefPubMedGoogle Scholar
  32. Minc E, Courvalin JC, Buendia B (2000) HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet 90:279–284CrossRefPubMedGoogle Scholar
  33. Minc E, Allory Y, Courvalin JC, Buendia B (2001) Immunolocalization of HP1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci 23:171–174CrossRefPubMedGoogle Scholar
  34. Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R (2001) Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 7:729–739CrossRefPubMedGoogle Scholar
  35. Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J Jr (2008) The maternal nucleolus is essential for early embryonic development in mammals. Science 319:613–616CrossRefPubMedGoogle Scholar
  36. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  37. Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88:263–267CrossRefPubMedGoogle Scholar
  38. Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:19–20CrossRefGoogle Scholar
  39. Peters AH, Mermoud JE, O'Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T (2002) Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30:77–80CrossRefPubMedGoogle Scholar
  40. Santoro R, Grummt I (2005) Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 25:2539–2546CrossRefPubMedGoogle Scholar
  41. Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396CrossRefPubMedGoogle Scholar
  42. Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF, Earnshaw WC (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci 104:573–582PubMedGoogle Scholar
  43. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063CrossRefPubMedGoogle Scholar
  44. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA 103:8703–8708CrossRefPubMedGoogle Scholar
  45. Singh PB, Georgatos SD (2002) HP1: facts, open questions, and speculation. J Struct Biol 140:10–16CrossRefPubMedGoogle Scholar
  46. Smallwood A, Estève PO, Pradhan S, Carey M (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169–1178CrossRefPubMedGoogle Scholar
  47. Soille P (2004) Morphological image analysis, principles and applications, 2nd edn. Springer, HeidelbergGoogle Scholar
  48. Strašák L, Bártová E, Harničarová A, Galiová G, Krejčí J, Kozubek S (2009) H3K9 acetylation and radial chromatin positioning. J Cell Physiol 220:91–101CrossRefPubMedGoogle Scholar
  49. Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol 3:114–120CrossRefPubMedGoogle Scholar
  50. Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271:14653–14656CrossRefPubMedGoogle Scholar
  51. Yuan X, Feng W, Imhof A, Grummt I, Zhou Y (2007) Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol Cell 27:585–595CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andrea Harničarová Horáková
    • 1
  • Eva Bártová
    • 1
  • Gabriela Galiová
    • 1
  • Radka Uhlířová
    • 1
  • Pavel Matula
    • 2
  • Stanislav Kozubek
    • 1
  1. 1.Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations