Advertisement

Chromosoma

, Volume 118, Issue 5, pp 567–574 | Cite as

At the right place at the right time: novel CENP-A binding proteins shed light on centromere assembly

  • Mariana C. C. Silva
  • Lars E. T. Jansen
Mini-Review

Abstract

Centromeres, the chromosomal loci that form the sites of attachment for spindle microtubules during mitosis, are identified by a unique chromatin structure generated by nucleosomes containing the histone H3 variant CENP-A. The apparent epigenetic mode of centromere inheritance across mitotic and meiotic divisions has generated much interest in how CENP-A assembly occurs and how structurally divergent centromeric nucleosomes can specify the centromere complex. Although a substantial number of proteins have been implicated in centromere assembly, factors that can bind CENP-A specifically and deliver nascent protein to the centromere were, thus far, lacking. Several recent reports on experiments in fission yeast and human cells have now shown significant progress on this problem. Here, we discuss these new developments and their implications for epigenetic centromere inheritance.

Keywords

Fission Yeast Histone Chaperone Mitotic Exit Centromeric Chromatin Centromere Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Dan Foltz and Ben Black for suggestions and discussion and Iain Cheeseman for the LAP-hMis18α construct. We are indebted to Don Cleveland in whose laboratory the LAP-hMis18α/CENP-A-SNAP double tagged line was built. MCCS is supported by the Fundação para a Ciência e Tecnologia (FCT) (SFRH/BD/33219/2007). LETJ is supported by FCT, Fundação Calouste Gulbenkian, the EU Seventh Framework Program (FP7) and by an EMBO installation grant.

References

  1. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937PubMedCrossRefGoogle Scholar
  2. Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KH (2004) Human centromere repositioning "in progress". Proc Natl Acad Sci USA 101:6542–6547PubMedCrossRefGoogle Scholar
  3. Aravind L, Iyer LM, Wu C (2007) Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell cycle (Georgetown. Tex 6:2511–2515Google Scholar
  4. Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582PubMedCrossRefGoogle Scholar
  5. Black BE, Brock MA, Bedard S, Woods VL Jr, Cleveland DW (2007a) An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc Natl Acad Sci USA 104:5008–5013PubMedCrossRefGoogle Scholar
  6. Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW (2007b) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322PubMedCrossRefGoogle Scholar
  7. Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5:158–163PubMedCrossRefGoogle Scholar
  8. Carroll CW, Silva MCC, Godek KM, Jansen LET, Straight AF (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol. 21 June 2009; doi: 10.1038/ncb1899
  9. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46PubMedCrossRefGoogle Scholar
  10. Cheeseman IM, Drubin DG, Barnes G (2002) Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 157:199–203PubMedCrossRefGoogle Scholar
  11. Chen ES, Saitoh S, Yanagida M, Takahashi K (2003) A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol Cell 11:175–187PubMedCrossRefGoogle Scholar
  12. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421PubMedCrossRefGoogle Scholar
  13. Dalal Y (2009) Epigenetic specification of centromeres. Biochem Cell Biol 87:273–282PubMedCrossRefGoogle Scholar
  14. Dunleavy EM, Pidoux AL, Monet M, Bonilla C, Richardson W, Hamilton GL, Ekwall K, McLaughlin PJ, Allshire RC (2007) A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Mol Cell 28:1029–1044PubMedCrossRefGoogle Scholar
  15. Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497PubMedCrossRefGoogle Scholar
  16. Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF (2008) Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol 183:805–818PubMedCrossRefGoogle Scholar
  17. Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469PubMedCrossRefGoogle Scholar
  18. Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484PubMedCrossRefGoogle Scholar
  19. Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of Centromere for CENP-A Recruitment by Human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12:17–30PubMedCrossRefGoogle Scholar
  20. Fukagawa T, De Wulf P (2009) Kinetochore composition, formation and organization. In: De Wulf P, Earnshaw WC (eds) The Kinetochore: from molecular discoveries to cancer therapy. Springer, New York, pp 133–191Google Scholar
  21. Furuyama T, Dalal Y, Henikoff S (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci USA 103:6172–6177PubMedCrossRefGoogle Scholar
  22. Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118:715–729PubMedCrossRefGoogle Scholar
  23. Hemmerich P, Weidtkamp-Peters S, Hoischen C, Schmiedeberg L, Erliandri I, Diekmann S (2008) Dynamics of inner kinetochore assembly and maintenance in living cells. J Cell Biol 180:1101–1114PubMedCrossRefGoogle Scholar
  24. Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315PubMedCrossRefGoogle Scholar
  25. Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K et al (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052PubMedCrossRefGoogle Scholar
  26. Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, Hiraoka Y, Takahashi K (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–1091PubMedCrossRefGoogle Scholar
  27. Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C, Kisu Y, Goshima N, Nomura F, Nomura N et al (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684PubMedCrossRefGoogle Scholar
  28. Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805PubMedCrossRefGoogle Scholar
  29. Kato T, Sato N, Hayama S, Yamabuki T, Ito T, Miyamoto M, Kondo S, Nakamura Y, Daigo Y (2007) Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 67:8544–8553PubMedCrossRefGoogle Scholar
  30. Kline SL, Cheeseman IM, Hori T, Fukagawa T, Desai A (2006) The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J Cell Biol 173:9–17PubMedCrossRefGoogle Scholar
  31. LeRoy G, Orphanides G, Lane WS, Reinberg D (1998) Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282:1900–1904PubMedCrossRefGoogle Scholar
  32. Liu ST, Rattner JB, Jablonski SA, Yen TJ (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175:41–53PubMedCrossRefGoogle Scholar
  33. Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176:757–763PubMedCrossRefGoogle Scholar
  34. McClelland SE, Borusu S, Amaro AC, Winter JR, Belwal M, McAinsh AD, Meraldi P (2007) The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J 26:5033–5047PubMedCrossRefGoogle Scholar
  35. Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C (2007) Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell 129:1153–1164PubMedCrossRefGoogle Scholar
  36. Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457PubMedCrossRefGoogle Scholar
  37. Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815PubMedCrossRefGoogle Scholar
  38. Perpelescu M, Nozaki N, Obuse C, Yang H, Yoda K (2009) Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol 185:397–407PubMedCrossRefGoogle Scholar
  39. Pidoux AL, Richardson W, Allshire RC (2003) Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol 161:295–307PubMedCrossRefGoogle Scholar
  40. Pidoux AL, Choi ES, Abbott JK, Liu X, Kagansky A, Castillo AG, Hamilton GL, Richardson W, Rappsilber J, He X et al (2009) Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Molecular cell 33:299–311PubMedCrossRefGoogle Scholar
  41. Regnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E, Trouche D, Earnshaw W, Brown W (2005) CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol 25:3967–3981PubMedCrossRefGoogle Scholar
  42. Schuh M, Lehner CF, Heidmann S (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17:237–243PubMedCrossRefGoogle Scholar
  43. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61PubMedCrossRefGoogle Scholar
  44. Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219PubMedCrossRefGoogle Scholar
  45. Takahashi K, Takayama Y, Masuda F, Kobayashi Y, Saitoh S (2005) Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle. Philos Trans R Soc Lond 360:595–606 discussion 606–597CrossRefGoogle Scholar
  46. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104PubMedCrossRefGoogle Scholar
  47. Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K (2005) The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 33:2868–2879PubMedCrossRefGoogle Scholar
  48. Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–626PubMedCrossRefGoogle Scholar
  49. Williams JS, Hayashi T, Yanagida M, Russell P (2009) Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Molecular cell 33:287–298PubMedCrossRefGoogle Scholar
  50. Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA 97:7266–7271PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Laboratory for Epigenetic MechanismsInstituto Gulbenkian de CiênciaOeirasPortugal

Personalised recommendations