, Volume 118, Issue 4, pp 437–443 | Cite as

Cajal’s contribution to the knowledge of the neuronal cell nucleus

  • Miguel Lafarga
  • Iñigo Casafont
  • Rocio Bengoechea
  • Olga Tapia
  • Maria T. Berciano


In 1906, the Spanish neurobiologist Santiago Ramón y Cajal was awarded the Nobel Prize in Physiology or Medicine in recognition of his work on the structure of neurons and their connections. Cajal is commonly regarded as the father of modern neuroscience. What is less well known is that Cajal also had a great interest in intracellular neuronal structures and developed the reduced silver nitrate method for the study of neurofibrils (neurofilaments) and nuclear subcompartments. It was in 1903 that Cajal discovered the “accessory body” (“Cajal body”) and seven years later, published an article on the organization of the cell nucleus in mammalian neurons that represents a masterpiece of nuclear structure at the light microscopy level. In addition to the accessory body, it includes the analysis of several nuclear components currently recognized as fibrillar centers of the nucleolus, nuclear speckles of splicing factors, transcription foci, nuclear matrix, and the double nuclear membrane. The aim of this article is to revisit Cajal’s contributions to the knowledge of the neuronal nucleus in light of our current understanding of nuclear structure and function.


Neuronal Nucleus Cajal Body Trigeminal Ganglion Neuron Nuclear Component Nuclear Speckle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. José M. López-Cepero for kindly providing the micrograph of Fig. 3b. This work was supported by the following grants: “Dirección General de Investigacion” of Spain (BFU2008-00175) and “Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; CB06/05/0037)” from Spain.


  1. Andrade LE, Chan EK, Raska I, Peebles CL, Roos G, Tan EM (1991) Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 173:1407–1419PubMedCrossRefGoogle Scholar
  2. Athias M (1905) Anatomia da cellula nervosa. LisboaGoogle Scholar
  3. Berciano MT, Novell M, Villagra NT, Casafont I, Bengoechea R, Val–Bernal JF, Lafarga M (2007) Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons. J Struct Biol 158:410–420PubMedCrossRefGoogle Scholar
  4. Cajal SR (1898) Histología normal y técnica micrográfica. Libreria Pascual Aguilar, ValenciaGoogle Scholar
  5. Cajal SR (1903) Un sencillo método de coloración selectiva del retículo protoplasmático y sus efectos en diversos órganos nerviosos. Trab Lab Invest Biol 2:129–221Google Scholar
  6. Cajal SR (1909) Histologie du système nerveux de l’homme et des vertébrés. Maloine, ParisGoogle Scholar
  7. Cajal SR (1910) El núcleo de las células piramidales del cerebro humano y de algunos mamíferos. Trab Lab Invest Biol 8:27–62Google Scholar
  8. Cajal SR (1923) Recuerdos de mi vida: historia de mi labor científica. Imprenta de Juan Pueyo, MadridGoogle Scholar
  9. Carmo-Fonseca M (2002) New clues to the function of the Cajal body. EMBO Rep 3:726–727PubMedCrossRefGoogle Scholar
  10. Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano MT, Carmo-Fonseca M (1999) The spinal muscular atrophy disease gene product, SMN: a link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol 147:715–728PubMedCrossRefGoogle Scholar
  11. Casafont I, Navascues J, Pena E, Lafarga M, Berciano MT (2006) Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5'-fluorouridine into nascent RNA. Neuroscience 140:453–462PubMedCrossRefGoogle Scholar
  12. Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131PubMedCrossRefGoogle Scholar
  13. Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, van Driel R, Fakan S (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell 10:211–223PubMedGoogle Scholar
  14. DeFelipe J (2002) Sesquicentenary of the birthday of Santiago Ramón y Cajal, the father of modern neuroscience. Trends Neurosci 25:481–484PubMedCrossRefGoogle Scholar
  15. Dimova RN, Markou DV, Gajdardjieva MD, Dabeva A, Hadjiolov A (1982) Electron microscopic localization of silver staining NOR-proteins in rat liver nucleoli upon d-galactosamine block of transcription. Eur J Cell Biol 28:272–277PubMedGoogle Scholar
  16. Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300PubMedCrossRefGoogle Scholar
  17. Gall JG (2003) The centennial of the Cajal body. Nat Rev Mol Cell Biol 4:975–980PubMedCrossRefGoogle Scholar
  18. Gall JG, Bellini M, Wu Z, Murphy C (1999) Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 10:4385–4402PubMedGoogle Scholar
  19. Garcia-Segura LM, Berciano MT, Lafarga M (1993) Nuclear compartmentalization in transcriptionally activated hypothalamic neurons. Biol Cell 77:143–154PubMedCrossRefGoogle Scholar
  20. Haggar RA (1957) Behavior of the accessory body of Cajal during axon reaction. J Comp Neurol 108:269–283PubMedCrossRefGoogle Scholar
  21. Hardin JH, Spicer SS, Greene WB (1969) The paranucleolar structure, accessory body of Cajal, sex chromatin, and related structures in nuclei of rat trigeminal neurons: a cytochemical and ultrastructural study. Anat Rec 164:403–431PubMedCrossRefGoogle Scholar
  22. Hendzel MJ, Kruhlak MJ, Bazett-Jones DP (1998) Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Mol Biol Cell 9:2491–2507PubMedGoogle Scholar
  23. Hervás JP, Lafarga M (1983) Light and electron microscopic characterization of the “accessory body” of Cajal in the neuronal nucleus. In: Grisolia S, Guerri C, Samson F, Norton S, Reinoso-Suárez F (eds) Ramón y Cajal’s contribution to the neurosciences. Elsevier, AmsterdamGoogle Scholar
  24. Hervás JP, Santa Cruz MC, Crespo D, Villegas J, Lafarga M (1982) Ultracytochemical approach to the coiled body in neurosecretory cells. Biol Cell 45:15–16Google Scholar
  25. Holmgren E (1900) Studien in der feineren Anatomie der Nervenzellen. Anat Hefte 15:1–90CrossRefGoogle Scholar
  26. Kaiser TE, Intine RV, Dundr M (2008) De novo formation of a subnuclear body. Science 322:1713–1717PubMedCrossRefGoogle Scholar
  27. Lache IG (1906) L’aspect du noyau de la cellula nerveuse dans le méthode a l’argent reduit. Anat Anz 28:161–168Google Scholar
  28. Lafarga M, Hervas JP, Santa-Cruz MC, Villegas J, Crespo D (1983) The “accessory body” of Cajal in the neuronal nucleus. A light and electron microscopic approach. Anat Embryol (Berl) 166:19–30CrossRefGoogle Scholar
  29. Lafarga M, Gonzalez C, Berciano MT (1986) An improved cytological silver staining method for the demonstration of neuronal nuclear bodies. J Neurosci Methods 18:317–324PubMedCrossRefGoogle Scholar
  30. Lafarga M, Andres MA, Fernandez-Viadero C, Villegas J, Berciano MT (1995) Number of nucleoli and coiled bodies and distribution of fibrillar centres in differentiating Purkinje neurons of chick and rat cerebellum. Anat Embryol (Berl) 191:359–367CrossRefGoogle Scholar
  31. Lafarga M, Berciano MT, Garcia-Segura LM, Andres MA, Carmo-Fonseca M (1998) Acute osmotic/stress stimuli induce a transient decrease of transcriptional activity in the neurosecretory neurons of supraoptic nuclei. J Neurocytol 27:205–217PubMedCrossRefGoogle Scholar
  32. Lamond AI, Carmo-Fonseca M (1993) The coiled body. Trends Cell Biol 3:198–204PubMedCrossRefGoogle Scholar
  33. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612PubMedCrossRefGoogle Scholar
  34. Levi G (1896) Su alcune particolarità di struttura del nucleo delle cellule nervose. Riv Patol Nerv Ment 1:141–149Google Scholar
  35. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719PubMedCrossRefGoogle Scholar
  36. Marinesco G (1905) Recherches sur le noyau et le nucléole de la cellule nerveuse à l'état normal et pathologique. J Psychol Neurol 5:151–172Google Scholar
  37. Marinesco G (1909) La cellule nerveuse. Doin, ParisGoogle Scholar
  38. Matera AG (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9:302–308PubMedCrossRefGoogle Scholar
  39. Matera AG, Shpargel KB (2006) Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 18:317–324PubMedCrossRefGoogle Scholar
  40. Monneron A, Bernhard W (1969) Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res 27:266–288PubMedCrossRefGoogle Scholar
  41. Morris GE (2008) The Cajal body. Biochim Biophys Acta 1783:2108–2115PubMedCrossRefGoogle Scholar
  42. Nayyar RP, Barr ML (1968) Histochemical studies on the accessory body of Cajal in neurones of the cat. J Comp Neurol 132:125–134PubMedCrossRefGoogle Scholar
  43. Nickerson J (2001) Experimental observations of a nuclear matrix. J Cell Sci 114:463–474PubMedGoogle Scholar
  44. Pebusque MJ, Seïte R (1981) Electron microscopic studies of silver-stained proteins in nucleolar organizer regions: location in nucleoli of rat sympathetic neurons during light and dark periods. J Cell Sci 51:85–94PubMedGoogle Scholar
  45. Pederson T (2000) Half a century of “the nuclear matrix”. Mol Biol Cell 11:799–805PubMedGoogle Scholar
  46. Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263PubMedCrossRefGoogle Scholar
  47. Peters A, Palay SL, Webster H (1991) The fine structure of the nervous system. Neurons and their supporting cells, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  48. Raska I, Ochs RL, Andrade LEC, Chan EKL, Burlingame R, Peebles C, Gruol D, Tan EM (1990) Association between the nucleolus and the coiled body. J Struct Biol 104:120–127PubMedCrossRefGoogle Scholar
  49. Raska I, Shaw PJ, Cmarko D (2006) New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235PubMedCrossRefGoogle Scholar
  50. Risueño MC, Medina JF (1986) The nucleolar structure in plant cells. Cell Biol Rev 7:1–163Google Scholar
  51. Risueño MC, Fernández-Gómez E, Giménez-Martín G (1973) Nucleoli under the electron microscope by silver impregnation. Mikroskopie 29:292–298PubMedGoogle Scholar
  52. Ruzicka W (1899) Zur Geschichte und Kenntnis der feineren Strcktur der Nucleolen centrallen Nervenzellen. Anat Anz 16:557–563Google Scholar
  53. Santama N, Dotti CG, Lamond AI (1996) Neuronal differentiation in the rat hippocampus involves a stage-specific reorganization of subnuclear structure both in vivo and in vitro. Eur J Neurosci 8:892–905PubMedCrossRefGoogle Scholar
  54. Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci U S A 102:17372–17377PubMedCrossRefGoogle Scholar
  55. Sleeman JE, Ajuh P, Lamond AI (2001) snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci 114:4407–4419PubMedGoogle Scholar
  56. Stanek D, Neugebauer KM (2006) The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 115:343–354PubMedCrossRefGoogle Scholar
  57. Takeuchi IK, Takeuchi YK (1984) Interchromatin granules in the dividing embryonic ectoderm cells of postimplantation rat embryos: an electron microscopic silver-staining study. J Electron Microsc (Tokyo) 33:151–159Google Scholar
  58. Tello F (1904) Las neurofibrillas en los vertebrados inferiores. Trab Lab Invest Biol 3:113–151Google Scholar
  59. Thiry M (1995) Behavior of interchromatin granules during the cell cycle. Eur J Cell Biol 68:14–24PubMedGoogle Scholar
  60. Thompson BK, Haggar RA, Barr ML (1957) The accessory body of Cajal in nerve cell nuclei of the cat. J Comp Neurol 108:253–267PubMedCrossRefGoogle Scholar
  61. Tucker KE, Matera AG (2005) The Cajal body: a nuclear gathering place. In: Hemmerich P, Diekmann S (eds) Vision of the cell nucleus. American Scientific Publishers, Stevenson RanchGoogle Scholar
  62. Tucker KE, Berciano MT, Jacobs EY, LePage DF, Shpargel KB, Rossire JJ, Chan EK, Lafarga M, Conlon RA, Matera AG (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154:293–307PubMedCrossRefGoogle Scholar
  63. Wei X, Somanathan S, Samarabandu J, Berezney R (1999) Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 146:543–558PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Miguel Lafarga
    • 1
  • Iñigo Casafont
    • 1
  • Rocio Bengoechea
    • 1
  • Olga Tapia
    • 1
  • Maria T. Berciano
    • 1
  1. 1.Department of Anatomy and Cell Biology and “Centro de Investigación Biomédica en Red sobre Enferemedades Neurodegenerativas (CIBERNED)”University of CantabriaSantanderSpain

Personalised recommendations