, Volume 118, Issue 4, pp 419–435 | Cite as

Constitutive heterochromatin: a surprising variety of expressed sequences

  • Patrizio DimitriEmail author
  • Ruggiero Caizzi
  • Ennio Giordano
  • Maria Carmela Accardo
  • Giovanna Lattanzi
  • Giuseppe Biamonti


The organization of chromosomes into euchromatin and heterochromatin is amongst the most important and enigmatic aspects of genome evolution. Constitutive heterochromatin is a basic yet still poorly understood component of eukaryotic chromosomes, and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Although recent evidence indicates that the presence of transcribed genes in constitutive heterochromatin is a conserved trait that accompanies the evolution of eukaryotic genomes, the term heterochromatin is still considered by many as synonymous of gene silencing. In this paper, we comprehensively review data that provide a clearer picture of transcribed sequences within constitutive heterochromatin, with a special emphasis on Drosophila and humans.


Constitutive Heterochromatin Pericentromeric Heterochromatin Pericentric Heterochromatin Heterochromatin Region Heterochromatin Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Patrizia Lavia for critical reading of the manuscript and to Roger Hoskins and DHGP for sharing informations on heterochromatin sequence and gene annotation. We also wish to thank three anonymous referees for helpful comments and suggestions. The P. Dimitri laboratory was supported by grants from Istituto Pasteur-Fondazione Cenci Bolognetti and National Institute of Health. G.Biamonti was supported by grants from AIRC and Cariplo.


  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedGoogle Scholar
  2. Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–781Google Scholar
  3. Aravin AA, Klenov MS, Vagin VV, Bantignies F, Cavalli G, Gvozdev VA (2004) Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol Cell Biol 24:6742–6750PubMedGoogle Scholar
  4. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655PubMedGoogle Scholar
  5. Biamonti G (2004) Nuclear stress bodies: a heterochromatin affair? Nat Rev Mol Cell Biol 5:493–498PubMedGoogle Scholar
  6. Biggs HW, Zavitz HK, Dikinson B, Van Der Straten A, Brunner D, Hafen E et al (1994) The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J 13:1628–1635PubMedGoogle Scholar
  7. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330PubMedGoogle Scholar
  8. Boyadjiev SA, South ST, Radford CL, Patel A, Zhang G, Hur DJ, Thomas GH, Gearhart JP, Stetten G (2005) A reciprocal translocation 46, XY, t(8;9)(p11.2;q13) in a bladder exstrophy patient disrupts CNTNAP3 and presents evidence of a pericentromeric duplication on chromosome 9. Genomics 85:622–629PubMedGoogle Scholar
  9. Bozzetti MP, Massari S, Finelli P, Meggio F, Pinna LA, Boldyreff B et al (1995) The Ste locus, a component of the parasitic cry-Ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase 2. PNAS 92:6067–6071PubMedGoogle Scholar
  10. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103PubMedGoogle Scholar
  11. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–1392PubMedGoogle Scholar
  12. Brosseau GE (1960) Genetic analysis of male fertility factors on the Y chromosomes of Drosophila melanogaster. Genetics 45:257–274PubMedGoogle Scholar
  13. Brown SW (1966) Heterochromatin. Science 151:417–425PubMedGoogle Scholar
  14. Brun ME, Ruault M, Ventura M, Roizes G, De Sario A (2003) Juxtacentromeric region of human chromosome 21: a boundary between centromeric heterochromatin and euchromatic chromosome arms. Gene 312:41–50PubMedGoogle Scholar
  15. Caron M, Auclair M, Donadille B, Bereziat V, Guerci B, Laville M, Narbonne H, Bodemer C, Lascols O, Capeau J, Vigouroux C (2007) Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ 14:1759–1767PubMedGoogle Scholar
  16. Carvalho AB, Dobo BA, Vibranovski MD, Clark AG (2001) Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A 98:13225–13230PubMedGoogle Scholar
  17. Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nat Genet 31:415–418PubMedGoogle Scholar
  18. Cenci G, Belloni G, Dimitri P (2003) 1(2) 41Aa, a heterochromatic gene of Drosophila melanogaster, is required for mitotic and meiotic chromosome condensation. Genet Res 81:15–24PubMedGoogle Scholar
  19. Ciani L, Krylova O, Smalley MJ, Dale TC, Salinas PC (2004) A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J Cell Biol 164:243–253PubMedGoogle Scholar
  20. Clegg NJ, Honda BM, Whitehead IP, Grigliatti TA, Wakimoto B, Brock HW et al (1998) Suppressors of position-effect variegation in Drosophila melanogaster affect expression of the heterochromatic gene light in the absence of a chromosome rearrangement. Genome 41:495–503PubMedGoogle Scholar
  21. Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, Maraldi NM, Lattanzi G (2005) Rescue of heterochromatin organization in Hutchinson–Gilford progeria by drug treatment. Cell Mol Life Sci 62:2669–2678PubMedGoogle Scholar
  22. Corradini N, Rossi F, Vernì F, Dimitri P (2003) FISH analysis of Drosophila heterochromatin using BACs and P-elements. Chromosoma 112:26–37PubMedGoogle Scholar
  23. Coulthard AB, Eberl DF, Sharp CB, Hilliker AJ (2003) Genetic analysis of the second chromosome centromeric heterochromatin of Drosophila melanogaster. Genome 46:343–352PubMedGoogle Scholar
  24. Cryderman DE, Grade SK, Li Y, Fanti L, Pimpinelli S, Wallrath LL (2005) Role of Drosophila HP1 in euchromatic gene expression. Dev Dyn 232:767–774PubMedGoogle Scholar
  25. Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, Hannon GJ, Brennecke J (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802PubMedGoogle Scholar
  26. Desset S, Meignin C, Dastugue B, Vaury C (2003) COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics 164:501–509PubMedGoogle Scholar
  27. De Wit E, Greil F, van Steensel B (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res 15:1265–1273PubMedGoogle Scholar
  28. De Wit E, Greil F, van Steensel B (2007) High-resolution mapping reveals links of HP1 with active and inactive chromatin components. PLoS Genet 2007:346–357Google Scholar
  29. Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86:135–146PubMedGoogle Scholar
  30. Devlin RH, Bingham B, Wakimoto BT (1990a) The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125:129–140PubMedGoogle Scholar
  31. Devlin RH, Holm DG, Morin KR, Honda BM (1990b) Identifying single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome 33:405–415PubMedGoogle Scholar
  32. Diekwisch TG, Marches F, Williams A, Luan X (1999) Cloning, gene expression, and characterization of CP27, a novel gene in mouse embryogenesis. Gene 235:19–30PubMedGoogle Scholar
  33. Dimitri P (1991) Cytogenetic analysis of the second chromosome heterochromatin of Drosophila melanogaster. Genetics 127:553–564PubMedGoogle Scholar
  34. Dimitri P, Junakovic N (1999) Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15:123–124PubMedGoogle Scholar
  35. Dimitri P, Arcà B, Berghella L, Mei E (1997) High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. Proc Natl Acad Sci U S A 94:8052–8057PubMedGoogle Scholar
  36. Dimitri P, Junakovic N, Arcà B (2003) Colonization of heterochromatic genes by transposable elements in Drosophila. Mol Biol Evol 20:503–512PubMedGoogle Scholar
  37. Dimitri P, Corradini N, Rossi F, Vernì F (2005a) The paradox of functional heterochromatin. Bioessays 27:29–41PubMedGoogle Scholar
  38. Dimitri P, Vernì F, Mei E, Rossi F, Corradini N (2005b) Transposable elements as artisans of the heterochromatic genome. Cytogenet Genome Res 110:165–172PubMedGoogle Scholar
  39. Eberl D, Duyf BJ, Hilliker AH (1993) The role of heterochromatin in the expression of a heterochromatic gene, the rolled gene of Drosophila melanogaster. Genetics 134:277–292PubMedGoogle Scholar
  40. Eichler EE, Lu F, Shen Y, Antonacci R, Jurecic V, Doggett NA, Moyzis RK, Baldini A, Gibbs RA, Nelson DL (1996) Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum Mol Genet 5:899–912PubMedGoogle Scholar
  41. Eissenberg JC, Hilliker AJ (2000) Versatility of conviction: heterochromatin as both repressor and an activator of transcription. Genetica 109:19–24PubMedGoogle Scholar
  42. Elgin SCR (1996) Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev 6:193–200PubMedGoogle Scholar
  43. Fanti L, Perrini B, Piacentini L, Berloco M, Marchetti E, Palumbo G, Pimpinelli S (2008) The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 117:25–39PubMedGoogle Scholar
  44. Fitzpatrick KA, Sinclair DA, Schulze SR, Syrzycka M, Honda BM (2005) A genetic and molecular profile of third chromosome centric heterochromatin in Drosophila melanogaster. Genome 48:571–584PubMedGoogle Scholar
  45. Fly Base 2009 (
  46. Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki TY et al (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–781PubMedGoogle Scholar
  47. Gatti M, Pimpinelli S (1983) Cytological and genetical analysis of the Y chromosome of Drosophila melanogaster. Chromosoma 88:349–373Google Scholar
  48. Gatti M, Pimpinelli S (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu Rev Genet 26:239–275PubMedGoogle Scholar
  49. Gause M, Eissenberg JC, Macrae AF, Dorsett M, Misulovin Z, Dorsett D (2006) Nipped-A, the Tra1/TRRAP subunit of the Drosophila SAGA and Tip60 complexes, has multiple roles in Notch signaling during wing development. Mol Cell Biol 26:2347–2359PubMedGoogle Scholar
  50. Gepner J, Hays TS (1993) A fertility region on the Y chromosome of Drosophila melanogaster encodes a dynein microtubule motor. Proc Natl Acad Sci U S A 90:11132–11136PubMedGoogle Scholar
  51. Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–1081PubMedGoogle Scholar
  52. Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter N, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566PubMedGoogle Scholar
  53. Greil F, van der Kraan I, Delrow J, Smothers JF, de Wit E, Bussemaker HJ et al (2003) Distinct HP1 and Su(var) 3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev 17:2825–2838PubMedGoogle Scholar
  54. Grunau C, Sanchez C, Ehrlich M, van der Bruggen P, Hindermann W, Rodriguez C, Krieger S, Dubeau L, Fiala E, De Sario A (2005) Frequent DNA hypomethylation of human juxtacentromeric BAGE loci in cancer. Genes Chromosomes Cancer 43:11–24PubMedGoogle Scholar
  55. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237PubMedGoogle Scholar
  56. Heitz E (1928) Das heterochromatin der Moose. Jb Wiss Bot 69:762–818Google Scholar
  57. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102PubMedGoogle Scholar
  58. Hilliker AJ (1976) Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics 83:765–782PubMedGoogle Scholar
  59. Hilliker AJ, Appels R, Schalet A (1980) The genetic analysis of D. melanogaster heterochromatin. Cell 21:607–619PubMedGoogle Scholar
  60. Horvath JE, Schwartz S, Eichler EE (2000) The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. Genome Res 10:839–852PubMedGoogle Scholar
  61. Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, kaminker JS et al (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biology 3:research0085.1–0085.16Google Scholar
  62. Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S, Mendez-Lago M, Rossi F, Villasante A, Dimitri P, Karpen GH, Celniker SE (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316:1625–1628PubMedGoogle Scholar
  63. Huisinga KL, Elgin SC (2009) Small RNA- directed heterochromatin formation in the context of development: what flies might learn from fission yeast. Biochim Biophys 1789:3–16Google Scholar
  64. Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115:110–122PubMedGoogle Scholar
  65. Inoue YH, Glover DM (1998) Involvement of the rolled/MAP kinase gene in Drosophila mitosis: interaction between genes for the MAP kinase cascade and abnormal spindle. Mol Gen Genet 258:334–341PubMedGoogle Scholar
  66. John B (1988) The biology of heterochromatin. In: Verma RS (ed) Heterochromatin: molecular and structural aspects. Cambridge University Press, Cambridge, pp 1–128Google Scholar
  67. Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33PubMedGoogle Scholar
  68. Karpen GH, Le MG, Le H (1996) Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273:118–122PubMedGoogle Scholar
  69. Koryakov DE, Zhimulev IF, Dimitri P (2002) Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster. Genetics 160:509–517PubMedGoogle Scholar
  70. Krantz ID, McCallum J, De Scipio C, Kaur M, Gillis LA, Yaeger D et al (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36:631–635PubMedGoogle Scholar
  71. Kurek RA, Reugels M, Lammermann U, Buenemann H (2000) Molecular aspects of intron evolution in dynein encoding mega-genes on the heterochromatic Y chromosome of Drosophila sp. Genetica 109:113–123PubMedGoogle Scholar
  72. Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A 103:4186–4191PubMedGoogle Scholar
  73. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378PubMedGoogle Scholar
  74. Lehnertz B, Ueda Y, Derijck AHA, Braunschweig U, Perez-Burgos L, Kubicek S et al (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200PubMedGoogle Scholar
  75. Litvak KJ (1984) Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107:611–634Google Scholar
  76. Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134:1149–1174PubMedGoogle Scholar
  77. Lu BY, Emtage PC, Duyf BJ, Hilliker AJ, Eissenberg JC (2000) Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 155:699–708PubMedGoogle Scholar
  78. Marchant GE, Holm DG (1988) Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. II. Vital loci identified through EMS mutagenesis. Genetics 120:519–532PubMedGoogle Scholar
  79. Marygold SJ, Coelho CM, Leevers SJ (2005) Genetic analysis of RpL38 and RpL5, two minute genes located in the centric heterochromatin of chromosome 2 of Drosophila melanogaster. Genetics 169:683–695PubMedGoogle Scholar
  80. Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, Dorsett D (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117:89–102PubMedGoogle Scholar
  81. Moritz KB, Roth GE (1976) Complexity of germline and somatic DNA in Ascaris. Nature 259:55–57PubMedGoogle Scholar
  82. Mudge JM, Jackson MS (2005) Evolutionary implications of pericentromeric gene expression in humans. Cytogenet Genome Res 108:47–57PubMedGoogle Scholar
  83. Myster SH, Wang F, Cavallo R, Christian W, Bhotika S, Anderson CT, Peifer M (2004) Genetic and bioinformatic analysis of 41C and the 2R heterochromatin of Drosophila melanogaster: a window on the heterochromatin–euchromatin junction. Genetics 166:807–822PubMedGoogle Scholar
  84. Neglia M, Bertoni L, Zoli W, Giulotto E (2003) Amplification of the pericentromeric region of chromosome 1 in a newly established colon carcinoma cell line. Cancer Genet Cytogenet 142:99–106PubMedGoogle Scholar
  85. Palumbo G, Berloco M, Fanti L, Bozzetti MP, Massari S, Caizzi R, Caggese C, Spinelli L, Pimpinelli S (1994) Interaction systems between heterochromatin and euchromatin in Drosophila melanogaster. Genetica 94:267–74PubMedGoogle Scholar
  86. Parks S, Wieschaus E (1991) The Drosophila gastrulation gene concertina encodes a Ga-like protein. Cell 64:447–458PubMedGoogle Scholar
  87. Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14:783–791PubMedGoogle Scholar
  88. Peterson DG, Pearson WR, Stack SM (1998) Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation. Genome 41:346–356Google Scholar
  89. Pimpinelli S, Dimitri P (1989) Cytogenetic analysis of segregation distortion in drosophila melanogaster: the cytological organization of the responder (Rsp) locus. Genetics 121:765–772PubMedGoogle Scholar
  90. Pimpinelli S, Bonaccorsi S, Gatti M, Sandler L (1985) The peculiar genetic organization of Drosophila heterochromatin. Trends Genet 2:17–20Google Scholar
  91. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E et al (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A 92:3804–3808PubMedGoogle Scholar
  92. Plath K, Mlynarczyk-Evans S, Nusinov DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278PubMedGoogle Scholar
  93. Prud’homme N, Gans M, Masson M, Terzian C, Bucheton A (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697–711PubMedGoogle Scholar
  94. Rasoly RS, Robbins LG (1991) Rex and suppressor of Rex arerepeated neomorphic loci in the Drosophila melanogaster ribosomal DNA. Genetics 129:119–132Google Scholar
  95. Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831PubMedGoogle Scholar
  96. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–11125PubMedGoogle Scholar
  97. Ritossa FM, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. PNAS 53:737–745PubMedGoogle Scholar
  98. Rizzi N, Denegri M, Chiodi I, Corioni M, Valgardsdottir R, Cobianchi F, Riva S, Biamonti G (2004) Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15:543–551PubMedGoogle Scholar
  99. Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593PubMedGoogle Scholar
  100. Rossi F, Moschetti R, Caizzi R, Corradini N, Dimitri P (2007) Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster. Genetics 175:595–607PubMedGoogle Scholar
  101. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat Med 11:440–445PubMedGoogle Scholar
  102. She X, Horvath JE, Jiang Z, Liu G, Furey TS, Christ L, Clark R, Graves T, Gulden CL, Alkan C et al (2004) The structure and evolution of centromeric transition regions within the human genome. Nature 430:857–864PubMedGoogle Scholar
  103. Schulze SR, Sinclair DA, Fitzpatrick KA, Honda BM (2005) A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics 169:2165–2177PubMedGoogle Scholar
  104. Shimada Y, Yonemura S, Ohkura H, Strutt D, Uemura T (2006) Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev Cell 10:209–222PubMedGoogle Scholar
  105. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS et al (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103:8703–8708PubMedGoogle Scholar
  106. Slawson EE, Shaffer CD, Malone CD, Leung W, Kellmann E, Shevchek RB, Craig CA, Bloom SM, 2nd Bogenpohl J, Dee J, Morimoto ET, Myoung J, Nett AS, Ozsolak F, Tittiger ME, Zeug A, Pardue ML, Buhler J, Mardis ER, Elgin SC (2006) Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biol 7:R15PubMedGoogle Scholar
  107. Smith CD, Yandell M, Edgar RC, Kennedy C, Carlson J et al (2005) The Drosophila Heterochromatin Genome Project (DHGP): genes and repeat annotation. Seventh International Conference on Drosophila Heterochromatin. Gubbio, ItalyGoogle Scholar
  108. Smith CD, Shu S, Mungall CJ, Karpen GH (2007) The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 316:1586–1591PubMedGoogle Scholar
  109. Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82PubMedGoogle Scholar
  110. Stewart CL, Roux KJ, Burke B (2007) Blurring the boundary: the nuclear envelope extends its reach. Science 318:1408–1412PubMedGoogle Scholar
  111. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083PubMedGoogle Scholar
  112. Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641PubMedGoogle Scholar
  113. Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene encoding poly (ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16:2108–2119PubMedGoogle Scholar
  114. Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva S, Biamonti G (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36:423–434PubMedGoogle Scholar
  115. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676PubMedGoogle Scholar
  116. Villasante A, Mendéz-Lago M, Abad JP, Montejo de Garcìni E (2007) The birth of the centromere. Cell Cycle 6:2872–2876PubMedGoogle Scholar
  117. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Mrtienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837PubMedGoogle Scholar
  118. Wakimoto BT, Hearn MG (1990) The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of D. melanogaster. Genetics 125:141–154PubMedGoogle Scholar
  119. Warner TS, Sinclair DA, Fitzpatrick KA, Singh M, Devlin RH, Honda BM (1998) The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking. Genome 41:236–243PubMedGoogle Scholar
  120. Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605PubMedGoogle Scholar
  121. Williams SM, Robbins LG (1992) Molecular genetic analysis of Drosophila rRNA arrays. Trends Genet 8:335–340PubMedGoogle Scholar
  122. Yasuhara JC, Wakimoto BT (2006) Oxymoron no more: the expanding world of heterochromatin. Trends Genet 22:330–338PubMedGoogle Scholar
  123. Yasuhara JC, Wakimoto BT (2008) Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin–heterochromatin transition zones. PLoS Genet 4:159–172Google Scholar
  124. Yasuhara JC, Marchetti M, Fanti L, Pimpinelli S, Wakimoto BT (2003) A strategy for mapping the heterochromatin of chromosome 2 of Drosophila melanogaster. Genetica 117:217–226PubMedGoogle Scholar
  125. Yasuhara JC, DeCrease CH, Wakimoto BT (2005) Evolution of heterochromatic genes of Drosophila. Proc Natl Acad Sci U S A 102:10958–10963PubMedGoogle Scholar
  126. Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450:304–308PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Patrizio Dimitri
    • 1
    Email author
  • Ruggiero Caizzi
    • 2
  • Ennio Giordano
    • 3
  • Maria Carmela Accardo
    • 1
  • Giovanna Lattanzi
    • 4
  • Giuseppe Biamonti
    • 5
  1. 1.Laboratorio di Genomica Funzionale e Proteomica di Sistemi modello and Istituto Pasteur-Fondazione Bolognetti, Dipartimento di Genetica e Biologia Molecolare “Charles Darwin“Università “La Sapienza“RomeItaly
  2. 2.Dipartimento di Genetica e MicrobiologiaUniversità di BariBariItaly
  3. 3.Dipartimento di Genetica, Biologia generale e MolecolareUniversità di Napoli Federico IINaplesItaly
  4. 4.Istituto di Genetica Molecolare IGM unit of Bologna c/o Istituto Ortopedico Rizzoli (IOR)BolognaItaly
  5. 5.Istituto di Genetica MolecolarePaviaItaly

Personalised recommendations