Cloning and sequencing of the breakpoint regions of inversion 5g fixed in Drosophila buzzatii
- 123 Downloads
- 8 Citations
Abstract
Chromosomal inversions are ubiquitous in Drosophila both as intraspecific polymorphisms and interspecific differences. Many gaps still remain in our understanding of the mechanisms that generate them. Previous work has shown that in Drosophila buzzatii, three polymorphic inversions were generated by ectopic recombination between copies of the transposon Galileo. In this study, we have characterized the breakpoint regions of inversion 5g, fixed in D. buzzatii and absent in Drosophila koepferae and other closely related species. A novel approach comprising four experimental steps was used. First, D. buzzatii BAC clones encompassing the breakpoints were identified and their ends sequenced. Then, breakpoint regions were mapped at high resolution in the Drosophila mojavensis genome sequence. Finally, breakpoint regions were isolated by polymerase chain reaction in D. buzzatii and D. koepferae and sequenced. Our aim was to shed light on the mechanism that generated inversion 5g and specifically to test for an implication of the transposon Galileo. No evidence implicates Galileo or other transposable elements in the origin of inversion 5g that was generated most likely by two independent breaks and non-homologous end-joining repair. Our results show that different inversion-generating mechanisms may coexist within the same lineage and suggest a hypothesis for the evolutionary time and mode of their operation.
Keywords
tRNA Gene Breakpoint Region Distal Breakpoint Ectopic Recombination Inversion BreakpointNotes
Acknowledgments
We thank Oriol Calvete, Alejandra Delprat, Barbara Negre and Marta Puig for technical support and comments on a previous version of the manuscript. Dmitri Petrov lent us generously his lab to carry out the final part of this project. Work supported by a PIF fellowship from the UAB awarded to O. P. da Costa and grant BFU2005-02237 from the Dirección General de Investigación (Ministerio de Educación y Ciencia, Spain) awarded to A. Ruiz.
Supplementary material
References
- Andolfatto P, Kreitman M (2000) Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics 154:1681–1691PubMedGoogle Scholar
- Bergman CM, Pfeiffer BD, Rincon-Limas DE et al (2002) Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 3:Research0086–6PubMedCrossRefGoogle Scholar
- Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM (2008) Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179:1657–1680PubMedCrossRefGoogle Scholar
- Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A (1999) Generation of a widespread Drosophila inversion by a transposable element. Science 285:415–418PubMedCrossRefGoogle Scholar
- Cáceres M, Puig M, Ruiz A (2001) Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 11:1353–1364PubMedCrossRefGoogle Scholar
- Casacuberta E, Pardue ML (2003) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci U S A 100:3363–3368PubMedCrossRefGoogle Scholar
- Casals F, Navarro A (2007) Chromosomal evolution: inversions: the chicken or the egg? Heredity 99:479–480PubMedCrossRefGoogle Scholar
- Casals F, Cáceres M, Ruiz A (2003) The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Mol Biol Evol 20:674–685PubMedCrossRefGoogle Scholar
- Casals F, Cáceres M, Manfrin MH, González J, Ruiz A (2005) Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 169:2047–2059PubMedCrossRefGoogle Scholar
- Casals F, González J, Ruiz A (2006) Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6. Chromosoma 115:403–412PubMedCrossRefGoogle Scholar
- Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar
- Cirera S, Martin-Campos JM, Segarra C, Aguade M (1995) Molecular characterization of the breakpoints of an inversion fixed between Drosophila melanogaster and Drosophila subobscura. Genetics 139:321–326PubMedGoogle Scholar
- Cirulli ET, Noor MA (2007) Localization and characterization of X chromosome inversion breakpoints separating Drosophila mojavensis and Drosophila arizonae. J Heredity 98:111–114CrossRefGoogle Scholar
- Coghlan A, Wolfe KH (2002) Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res 16:857–867CrossRefGoogle Scholar
- Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 21:673–682PubMedCrossRefGoogle Scholar
- Coulibaly MB, Lobo NF, Fitzpatrick MC et al (2007) Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae. PLoS ONE 2:e849PubMedCrossRefGoogle Scholar
- Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218CrossRefGoogle Scholar
- Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192PubMedCrossRefGoogle Scholar
- Eichler EE, Sankoff D (2003) Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797PubMedCrossRefGoogle Scholar
- Engels WR, Preston CR (1984) Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107:657–678PubMedGoogle Scholar
- Gómez GA, Hasson E (2003) Transpecific polymorphisms in an inversion linked esterase locus in Drosophila buzzatii. Mol Biol Evol 20:410–423PubMedCrossRefGoogle Scholar
- González J, Ranz JM, Ruiz A (2002) Chromosomal elements evolve at different rates in the Drosophila genome. Genetics 161:1137–1154PubMedGoogle Scholar
- González J, Nefedov M, Bosdet I et al (2005) A BAC-based physical map of the Drosophila buzzatii genome. Genome Res 15:885–892PubMedCrossRefGoogle Scholar
- Hoffmann AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst 39:21–42CrossRefGoogle Scholar
- Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
- Hurles ME, Dermitzakis ET, Tyler-Smith C (2008) The functional impact of structural variation in humans. Trends Genet 24:238–245PubMedCrossRefGoogle Scholar
- Kapitonov VV, Jurka J (2007a) Helitrons in fruit flies. Repbase Reports 7:129Google Scholar
- Kapitonov VV, Jurka J (2007b) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23:521–529PubMedCrossRefGoogle Scholar
- Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254PubMedCrossRefGoogle Scholar
- Krimbas CB, Powell JR (1992) Drosophila inversion polymorphism. CRC, Boca RatonGoogle Scholar
- Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642PubMedCrossRefGoogle Scholar
- Lim JK, Simmons MJ (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. Bioessays 16:269–275PubMedCrossRefGoogle Scholar
- Lukusa T, Fryns JP (2008) Human chromosome fragility. Biochim Biophys Acta 1779:3–16PubMedGoogle Scholar
- Marzo M, Puig M, Ruiz A (2008) The foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci U S A 105:2957–2962PubMedCrossRefGoogle Scholar
- Mathiopoulos KD, della Torre A, Predazzi V, Petrarca V, Coluzzi M (1998) Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. Proc Natl Acad Sci U S A 95:12444–12449PubMedCrossRefGoogle Scholar
- Matzkin LM, Merritt TJ, Zhu CT, Eanes WF (2005) The structure and population genetics of the breakpoints associated with the cosmopolitan chromosomal inversion In(3R)Payne in Drosophila melanogaster. Genetics 170:1143–1152PubMedCrossRefGoogle Scholar
- Montgomery E, Charlesworth B, Langley CH (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res 49:31–41PubMedCrossRefGoogle Scholar
- Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265PubMedCrossRefGoogle Scholar
- Noor MA, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A 98:12084–12088PubMedCrossRefGoogle Scholar
- Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL (2005) Two retrotransposons maintain telomeres in Drosophila. Chromosome Res 13:443–453PubMedCrossRefGoogle Scholar
- Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50PubMedGoogle Scholar
- Petes TD, Hill CW (1988) Recombination between repeated genes in microorganisms. Annu Rev Genet 22:147–168PubMedCrossRefGoogle Scholar
- Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91PubMedCrossRefGoogle Scholar
- Petrov DA, Hartl DL (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15:293–302PubMedGoogle Scholar
- Petrov DA, Lozovskaya ER, Hartl DL (1996) High intrinsic rate of DNA loss in Drosophila. Nature 384:346–349PubMedCrossRefGoogle Scholar
- Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062PubMedCrossRefGoogle Scholar
- Powell JR (1997) Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press, OxfordGoogle Scholar
- Puig M, Caceres M, Ruiz A (1994) Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA. Proc Natl Acad Sci U S A 101(24):9013–9018CrossRefGoogle Scholar
- Ranz JM, Segarra C, Ruiz A (1997) Chromosomal homology and molecular organization of Muller’s elements D and E in the Drosophila repleta species group. Genetics 145:281–295PubMedGoogle Scholar
- Ranz JM, Casals F, Ruiz A (2001) How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Res 11:230–239PubMedCrossRefGoogle Scholar
- Ranz JM, Maurin D, Chan YS et al (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5:e152PubMedCrossRefGoogle Scholar
- Richards S, Liu Y, Bettencourt BR et al (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15:1–18PubMedCrossRefGoogle Scholar
- Ruiz A, Wasserman M (1993) Evolutionary cytogenetics of the Drosophila buzzatii species complex. Heredity 70:582–596PubMedCrossRefGoogle Scholar
- Runcie DE, Noor MA (2009) Sequence signatures of a recent chromosomal rearrangement in Drosophila mojavensis. Genetica. Jul 26 (in press)Google Scholar
- Russo CA, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Mol Biol Evol 12:391–404PubMedGoogle Scholar
- Schaeffer SW, Bhutkar A, McAllister BF et al (2008) Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179:1601–1655PubMedCrossRefGoogle Scholar
- Schwartz M, Zlotorynski E, Kerem B (2006) The molecular basis of common and rare fragile sites. Cancer Lett 232:13–26PubMedCrossRefGoogle Scholar
- Sharakhov IV, White BJ, Sharakhova MV et al (2006) Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. Proc Natl Acad Sci U S A 103:6258–6262PubMedCrossRefGoogle Scholar
- Singh ND, Petrov DA (2004) Rapid sequence turnover at an intergenic locus in Drosophila. Mol Biol Evol 21:670–680PubMedCrossRefGoogle Scholar
- Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5:1021–1029PubMedCrossRefGoogle Scholar
- Sperlich D, Pfriem P (1986) Chromosomal polymorphism in natural and experimental populations. In: Ashburner M, Carson HL, Thompson JN Jr. (eds) The genetics and biology of Drosophila. 3rd rd edn. Academic, NY, pp 257–309Google Scholar
- Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, LondonGoogle Scholar
- Stone WA (1962) The dominance of natural selection and the reality of superspecies (species groups) in the evolution of Drosophila. Univ Texas Publ 6205:507–537Google Scholar
- Sturtevant AH (1917) Genetic factors affecting the strength of linkage in Drosophila. Proc Natl Acad Sci U S A 3:555–558PubMedCrossRefGoogle Scholar
- Szankasi P, Gysler C, Zehntner U, Leupold U, Kohli J, Munz P (1986) Mitotic recombination between dispersed but related tRNA genes of Schizosaccharomyces pombe generates a reciprocal translocation. Mol Gen Genet 202:394–402CrossRefGoogle Scholar
- Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21:36–44PubMedCrossRefGoogle Scholar
- Tatusova TA, Madden TL (1999) BLAST 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250PubMedCrossRefGoogle Scholar
- Villasante A, Abad JP, Planelló R, Méndez-Lago M, Celniker SE, de Pablos B (2007) Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res 17:1909–1918PubMedCrossRefGoogle Scholar
- Wasserman M (1962) Cytological studies of the repleta group of the genus Drosophila: V. The mulleri subgroup. Univ Tex Publ 6205:85–117Google Scholar
- Wasserman M (1992) Cytological evolution of the Drosophila repleta species group. A: Drosophila inversion polymorphism (edited by Krimbas CB and Powell JR). CRC, Boca Raton, FL, pp 455–452Google Scholar
- Wesley CS, Eanes WF (1994) Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. Proc Natl Acad Sci U S A 91:3132–3136PubMedCrossRefGoogle Scholar
- Wharton LT (1942) Analysis of the repleta group of Drosophila. Univ Texas Pub 4228:23–59Google Scholar
- White MJD (1973) Animal cytology and evolution. Cambridge University Press, CambridgeGoogle Scholar
- Wicker T, Sabot F, Hua-Van A (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
- Yang HP, Barbash DA (2008) Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol 9:R39PubMedCrossRefGoogle Scholar
- Zhang H, Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27:367–379PubMedCrossRefGoogle Scholar