, Volume 118, Issue 2, pp 141–151

RNA turnover and chromatin-dependent gene silencing



Over the last few years, there has been a convergence of two seemingly disparate fields of study: chromatin-dependent gene silencing and RNA turnover. In contrast to RNA turnover mechanisms that operate on a truly posttranscriptional level, we are at the beginning of studies leading the way toward a model in which RNA turnover mechanisms are also involved in chromatin-dependent gene regulation. In particular, data from a variety of organisms have shown that the assembly of silent chromatin coincides with the presence or absence of non-protein-coding RNAs (ncRNAs). These range from long ncRNAs that have been classically implicated in the regulation of dosage compensation and genomic imprinting to small ncRNAs which are involved in heterochromatin assembly via the RNA interference (RNAi) pathway. This raises the question of how common ncRNAs are used to control gene expression at the level of chromatin. It is known at least, that they are present, as recent findings indicate that transcription of eukaryotic genomes is much more widespread than previously anticipated. However, the existence of a ncRNA does not prove its biological significance. Thus, a future challenge will be to distinguish the ncRNAs that are in some way meaningful to the organism from those that arise from the imperfect fidelity of the transcription machinery. Finally, no matter whether functional or not, RNAs transcribed from supposedly silent chromatin seem to be processed rapidly. Recent data from both fission and budding yeast suggest that chromatin-dependent gene silencing is achieved, at least in part, through RNA turnover mechanisms that use components of the RNAi pathway as well as polyadenylation-dependent RNA decay. Hence, silent chromatin is not only controlled transcriptionally, but also on co- and posttranscriptional levels.


  1. Andrulis ED, Werner J et al (2002) The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420(6917):837–841PubMedCrossRefGoogle Scholar
  2. Azzalin CM, Reichenbach P et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(5851):798–801PubMedCrossRefGoogle Scholar
  3. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655PubMedCrossRefGoogle Scholar
  4. Berretta J, Pinskaya M et al (2008) A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 22(5):615–626PubMedCrossRefGoogle Scholar
  5. Birney E, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816PubMedCrossRefGoogle Scholar
  6. Breiling A, Turner BM et al (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412(6847):651–655PubMedCrossRefGoogle Scholar
  7. Buhler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14(11):1041–1048PubMedCrossRefGoogle Scholar
  8. Buhler M, Verdel A et al (2006) Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125(5):873–886PubMedCrossRefGoogle Scholar
  9. Buhler M, Haas W et al (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129(4):707–721PubMedCrossRefGoogle Scholar
  10. Buhler M, Spies N et al (2008) TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 15(10):1015–1023PubMedCrossRefGoogle Scholar
  11. Buker SM, Iida T et al (2007) Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat Struct Mol Biol 14(3):200–207PubMedCrossRefGoogle Scholar
  12. Cam HP, Sugiyama T et al (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37(8):809–819PubMedCrossRefGoogle Scholar
  13. Camblong J, Iglesias N et al (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131(4):706–717PubMedCrossRefGoogle Scholar
  14. Carninci P, Kasukawa T et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563PubMedCrossRefGoogle Scholar
  15. Castano IB, Brzoska PM et al (1996) Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev 10(20):2564–2576PubMedCrossRefGoogle Scholar
  16. Chekanova JA, Gregory BD et al (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131(7):1340–1353PubMedCrossRefGoogle Scholar
  17. Chen ES, Zhang K et al (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451(7179):734–737PubMedCrossRefGoogle Scholar
  18. Cheng J, Kapranov P et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308(5725):1149–1154PubMedCrossRefGoogle Scholar
  19. Ciaudo C, Bourdet A et al (2006) Nuclear mRNA degradation pathway(s) are implicated in Xist regulation and X chromosome inactivation. PLoS Genet 2(6):e94PubMedCrossRefGoogle Scholar
  20. Dellino GI, Schwartz YB et al (2004) Polycomb silencing blocks transcription initiation. Mol Cell 13(6):887–893PubMedCrossRefGoogle Scholar
  21. Doma MK, Parker R (2007) RNA quality control in eukaryotes. Cell 131(4):660–668PubMedCrossRefGoogle Scholar
  22. Edwards S, Li CM et al (2003) Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Mol Cell Biol 23(8):2733–2748PubMedCrossRefGoogle Scholar
  23. Grewal SI, Elgin SC (2007a) Transcription and RNA interference in the formation of heterochromatin. Nature 447(7143):399–406PubMedCrossRefGoogle Scholar
  24. Grewal SI, Jia S (2007b) Heterochromatin revisited. Nat Rev Genet 8(1):35–46PubMedCrossRefGoogle Scholar
  25. Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301(5634):798–802PubMedCrossRefGoogle Scholar
  26. Grishok A, Sinskey JL et al (2005) Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev 19(6):683–696PubMedCrossRefGoogle Scholar
  27. Guenther MG, Levine SS et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88PubMedCrossRefGoogle Scholar
  28. Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132(6):983–995PubMedCrossRefGoogle Scholar
  29. Heitz E (1928) Das Heterochromatin der Moose. Jahrb Wiss Bot 69:762–818Google Scholar
  30. Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447(7143):418–424PubMedCrossRefGoogle Scholar
  31. Hilleren P, McCarthy T et al (2001) Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413(6855):538–542PubMedCrossRefGoogle Scholar
  32. Hirota K, Miyoshi T et al (2008) Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456(7218):130–134PubMedCrossRefGoogle Scholar
  33. Hongay CF, Grisafi PL et al (2006) Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127(4):735–745PubMedCrossRefGoogle Scholar
  34. Houseley J, Tollervey D (2008) The nuclear RNA surveillance machinery: the link between ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 1779(4):239–246PubMedGoogle Scholar
  35. Houseley J, Lacava J et al (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7(7):529–539PubMedCrossRefGoogle Scholar
  36. Houseley J, Kotovic K et al (2007) Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J 26(24):4996–5006PubMedCrossRefGoogle Scholar
  37. Irvine DV, Zaratiegui M et al (2006) Argonaute slicing is required for heterochromatic silencing and spreading. Science 313(5790):1134–1137PubMedCrossRefGoogle Scholar
  38. Jia S, Yamada T et al (2004) Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119(4):469–480PubMedCrossRefGoogle Scholar
  39. Kanellopoulou C, Muljo SA et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501PubMedCrossRefGoogle Scholar
  40. Kinoshita N, Goebl M et al (1991) The fission yeast dis3+ gene encodes a 110-kDa essential protein implicated in mitotic control. Mol Cell Biol 11(12):5839–5847PubMedGoogle Scholar
  41. Kloc A, Zaratiegui M et al (2008) RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol 18(7):490–495PubMedCrossRefGoogle Scholar
  42. Lacava J, Houseley J et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5):713–724PubMedCrossRefGoogle Scholar
  43. Li F, Sonbuchner L et al (2008) Nuclear non-coding RNAs are transcribed from the centromeres of Plasmodium falciparum and are associated with centromeric chromatin. J Biol Chem 283(9):5692–5698PubMedCrossRefGoogle Scholar
  44. Lorite P, Renault S et al (2002) Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae). Genome 45(4):609–616PubMedCrossRefGoogle Scholar
  45. Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179(3):411–421PubMedCrossRefGoogle Scholar
  46. Lu J, Gilbert DM (2008) Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence? Cell Cycle 7(13):1907–1910PubMedGoogle Scholar
  47. Mancini-Dinardo D, Steele SJ et al (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20(10):1268–1282PubMedCrossRefGoogle Scholar
  48. Marahrens Y, Loring J et al (1998) Role of the Xist gene in X chromosome choosing. Cell 92(5):657–664PubMedCrossRefGoogle Scholar
  49. Martens JA, Laprade L et al (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429(6991):571–574PubMedCrossRefGoogle Scholar
  50. Masui O, Heard E (2006) RNA and protein actors in X-chromosome inactivation. Cold Spring Harb Symp Quant Biol 71:419–428PubMedCrossRefGoogle Scholar
  51. Mette MF, Aufsatz W et al (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19(19):5194–5201PubMedCrossRefGoogle Scholar
  52. Mochizuki K, Fine NA et al (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110(6):689–699PubMedCrossRefGoogle Scholar
  53. Motamedi MR, Verdel A et al (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119(6):789–802PubMedCrossRefGoogle Scholar
  54. Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–334CrossRefGoogle Scholar
  55. Murakami H, Goto DB et al (2007) Ribonuclease activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function. PLoS ONE 2:e317PubMedCrossRefGoogle Scholar
  56. Murchison EP, Partridge JF et al (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102(34):12135–12140PubMedCrossRefGoogle Scholar
  57. Nagalakshmi U, Wang Z et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349PubMedCrossRefGoogle Scholar
  58. Nicolas E, Yamada T et al (2007) Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 14(5):372–380PubMedCrossRefGoogle Scholar
  59. Ogawa Y, Sun BK et al (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320(5881):1336–1341PubMedCrossRefGoogle Scholar
  60. Ohkura H, Adachi Y et al (1988) Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J 7(5):1465–1473PubMedGoogle Scholar
  61. Pal-Bhadra M, Bhadra U et al (1999) Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 99(1):35–46PubMedCrossRefGoogle Scholar
  62. Pal-Bhadra M, Bhadra U et al (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9(2):315–327PubMedCrossRefGoogle Scholar
  63. Pal-Bhadra M, Leibovitch BA et al (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303(5658):669–672PubMedCrossRefGoogle Scholar
  64. Penny GD, Kay GF et al (1996) Requirement for Xist in X chromosome inactivation. Nature 379(6561):131–137PubMedCrossRefGoogle Scholar
  65. Pezer Z, Ugarkovic D (2008) RNA Pol II promotes transcription of centromeric satellite DNA in beetles. PLoS ONE 3(2):e1594PubMedCrossRefGoogle Scholar
  66. Pidoux AL, Allshire RC (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12(6):521–534PubMedCrossRefGoogle Scholar
  67. Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297(5588):1831PubMedCrossRefGoogle Scholar
  68. Robert VJ, Sijen T et al (2005) Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes Dev 19(7):782–787PubMedCrossRefGoogle Scholar
  69. Rougemaille M, Gudipati RK et al (2007) Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO J 26(9):2317–2326PubMedCrossRefGoogle Scholar
  70. Rouleux-Bonnin F, Renault S et al (1996) Transcription of four satellite DNA subfamilies in Diprion pini (Hymenoptera, Symphyta, Diprionidae). Eur J Biochem 238(3):752–759PubMedCrossRefGoogle Scholar
  71. Rouleux-Bonnin F, Bigot S et al (2004) Structural and transcriptional features of Bombus terrestris satellite DNA and their potential involvement in the differentiation process. Genome 47(5):877–888PubMedCrossRefGoogle Scholar
  72. Sadoff BU, Heath-Pagliuso S et al (1995) Isolation of mutants of Saccharomyces cerevisiae requiring DNA topoisomerase I. Genetics 141(2):465–479PubMedGoogle Scholar
  73. Sleutels F, Zwart R et al (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415(6873):810–813PubMedGoogle Scholar
  74. Slomovic S, Portnoy V et al (2008) Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim Biophys Acta 1779(4):247–255PubMedGoogle Scholar
  75. Smith CD, Shu S et al (2007) The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 316(5831):1586–1591PubMedCrossRefGoogle Scholar
  76. Steinmetz EJ, Warren CL et al (2006) Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24(5):735–746PubMedCrossRefGoogle Scholar
  77. Taverna SD, Coyne RS et al (2002) Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 110(6):701–711PubMedCrossRefGoogle Scholar
  78. Tycko B, Efstratiadis A (2002) Genomic imprinting: piece of cake. Nature 417(6892):913–914PubMedCrossRefGoogle Scholar
  79. Vanacova S, Wolf J et al (2005) A new yeast poly(a) polymerase complex involved in RNA quality control. PLoS Biol 3(6):e189PubMedCrossRefGoogle Scholar
  80. Vasiljeva L, Kim M et al (2008) Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol Cell 29(3):313–323PubMedCrossRefGoogle Scholar
  81. Verdel A, Jia S et al (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303(5658):672–676PubMedCrossRefGoogle Scholar
  82. Verona RI, Mann MR et al (2003) Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 19:237–259PubMedCrossRefGoogle Scholar
  83. Volpe TA, Kidner C et al (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297(5588):1833–1837PubMedCrossRefGoogle Scholar
  84. Wang Z, Castano IB et al (2000) Pol kappa: a DNA polymerase required for sister chromatid cohesion. Science 289(5480):774–779PubMedCrossRefGoogle Scholar
  85. Wang SW, Stevenson AL et al (2008) Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol Cell Biol 28(2):656–665PubMedCrossRefGoogle Scholar
  86. Wilhelm BT, Marguerat S et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199):1239–1243PubMedCrossRefGoogle Scholar
  87. Willingham AT, Gingeras TR (2006) TUF love for “junk” DNA. Cell 125(7):1215–1220PubMedCrossRefGoogle Scholar
  88. Win TZ, Draper S et al (2006) Requirement of fission yeast Cid14 in polyadenylation of rRNAs. Mol Cell Biol 26(5):1710–1721PubMedCrossRefGoogle Scholar
  89. Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5(4):695–705PubMedCrossRefGoogle Scholar
  90. Wyers F, Rougemaille M et al (2005) Cryptic Pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737PubMedCrossRefGoogle Scholar
  91. Yamada T, Fischle W et al (2005) The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 20(2):173–185PubMedCrossRefGoogle Scholar
  92. Yasuhara JC, Wakimoto BT (2006) Oxymoron no more: the expanding world of heterochromatic genes. Trends Genet 22(6):330–338PubMedCrossRefGoogle Scholar
  93. Zamore PD (2001) RNA interference: listening to the sound of silence. Nat Struct Biol 8(9):746–750PubMedCrossRefGoogle Scholar
  94. Zaratiegui M, Irvine DV et al (2007) Noncoding RNAs and gene silencing. Cell 128(4):763–776PubMedCrossRefGoogle Scholar
  95. Zhimulev IF, Belyaeva ES, Fomina OV, Protopopov MO, Bolshakov VN (1986) Cytogenetic and molecular aspects of position effect variegation in Drosophila melanogaster. I. Morphology and genetic activity of the 2AB region in chromosome rearrangement T (1;2) dor-var7. Chromosoma 94(6):492–504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland

Personalised recommendations