Chromosoma

, Volume 117, Issue 2, pp 189–198 | Cite as

In vivo modeling of polysumoylation uncovers targeting of Topoisomerase II to the nucleolus via optimal level of SUMO modification

Research Article

Abstract

Conjugation of SUMO to target proteins is an essential eukaryotic regulatory pathway. Multiple potential SUMO substrates were identified among nuclear and chromatin proteins by proteomic approaches. However, the functional roles of SUMO-modified pools of individual proteins remain largely obscure, as only a small fraction of a given target is sumoylated and therefore is experimentally inaccessible. To overcome this technical difficulty in case of Topoisomerase II, we employed constitutive SUMO modification, enabling tracking of modified Top2p, not only biochemically but also cytologically and genetically. Topoisomerase II fused to a critical number of SUMO repeats is concentrated at the specific intranuclear domain, the nucleolus, when more than four SUMO moieties are added, indicating that fused SUMO repeats are biologically active. Further analysis has established that poly-sumoylation of Top2p is required for the stable maintenance of the nucleolar organizer, linking SUMO-mediated targeting to functional maintenance of ribosomal RNA gene cluster.

Notes

Acknowledgments

Authors thank Y. Kikuchi for plasmids and strains, V. Yong-Gonzalez, P. Butylin, S. Dulev, A. Samoshkin, and X. Strunnikova for fruitful discussion, and S. Malhotra and Y. Ejamo for technical assistance. This work was supported by the NICHD Intramural Program.

References

  1. Bachant J, Alcasabas A et al (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell 9(6):1169–1182PubMedCrossRefGoogle Scholar
  2. Brill SJ, DiNardo S et al (1987) Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326(6111):414–416PubMedCrossRefGoogle Scholar
  3. Christman MF, Dietrich FS et al (1988) Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55(3):413–425PubMedCrossRefGoogle Scholar
  4. D’Amours D, Stegmeier F et al (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117(4):455–469PubMedCrossRefGoogle Scholar
  5. Denison C, Rudner AD et al (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4(3):246–254PubMedCrossRefGoogle Scholar
  6. Dobreva G, Dambacher J et al (2003) SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev 17(24):3048–3061PubMedCrossRefGoogle Scholar
  7. Hannich JT, Lewis A et al (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280(6):4102–4110PubMedCrossRefGoogle Scholar
  8. Hecker CM, Rabiller M et al (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281(23):16117–16127PubMedCrossRefGoogle Scholar
  9. Huang TT, Wuerzberger-Davis SM et al (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115(5):565–576PubMedCrossRefGoogle Scholar
  10. Huh WK, Falvo JV et al (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691PubMedCrossRefGoogle Scholar
  11. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382PubMedCrossRefGoogle Scholar
  12. Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272(43):26799–26802PubMedCrossRefGoogle Scholar
  13. Johnson ES, Blobel G (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147(5):981–994PubMedCrossRefGoogle Scholar
  14. Kerscher O (2007) SUMO junction—what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8(6):550–555PubMedCrossRefGoogle Scholar
  15. Kim RA, Wang JC (1989) A subthreshold level of DNA topoisomerases leads to the excision of yeast rDNA as extrachromosomal rings. Cell 57(6):975–985PubMedCrossRefGoogle Scholar
  16. Li SJ, Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20(7):2367–2377PubMedCrossRefGoogle Scholar
  17. Lin DY, Huang YS et al (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24(3):341–354PubMedCrossRefGoogle Scholar
  18. Mahajan R, Delphin C et al (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88(1):97–107PubMedCrossRefGoogle Scholar
  19. Matunis MJ, Coutavas E et al (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135(6 Pt 1):1457–1470PubMedCrossRefGoogle Scholar
  20. Mo YY, Yu Y et al (2002) Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J Biol Chem 277(4):2958–2964PubMedCrossRefGoogle Scholar
  21. Montpetit B, Hazbun TR et al (2006) Sumoylation of the budding yeast kinetochore protein Ndc10 is required for Ndc10 spindle localization and regulation of anaphase spindle elongation. J Cell Biol 174(5):653–663PubMedCrossRefGoogle Scholar
  22. Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32(6):286–295PubMedCrossRefGoogle Scholar
  23. Panse VG, Hardeland U et al (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279(40):41346–41351PubMedCrossRefGoogle Scholar
  24. Reindle A, Belichenko I et al (2006) Multiple domains in Siz SUMO ligases contribute to substrate selectivity. J Cell Sci 119(Pt 22):4749–4757PubMedCrossRefGoogle Scholar
  25. Ross S, Best JL et al (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10(4):831–842PubMedCrossRefGoogle Scholar
  26. Saeki Y, Isono E et al (2004) Intracellularly inducible, ubiquitin hydrolase-insensitive tandem ubiquitins inhibit the 26S proteasome activity and cell division. Genes Genet Syst 79(2):77–86PubMedCrossRefGoogle Scholar
  27. Saitoh H, Sparrow DB et al (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8(2):121–124PubMedCrossRefGoogle Scholar
  28. Sakaguchi A, Akashi T et al (2001) A distinct subnuclear localization of mammalian DNA topoisomerase IIbeta in yeast. Biochem Biophys Res Commun 283(4):876–882PubMedCrossRefGoogle Scholar
  29. Sasaki T, Toh EA et al (2000) Yeast Krr1p physically and functionally interacts with a novel essential Kri1p, and both proteins are required for 40S ribosome biogenesis in the nucleolus. Mol Cell Biol 20(21):7971–7979PubMedCrossRefGoogle Scholar
  30. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100(23):13225–13230PubMedCrossRefGoogle Scholar
  31. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269PubMedCrossRefGoogle Scholar
  32. Strunnikov AV, Aravind L et al (2001) Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics 158(1):95–107PubMedGoogle Scholar
  33. Sun H, Leverson JD et al (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. Embo J 26:4102–4112PubMedCrossRefGoogle Scholar
  34. Takahashi Y, Toh EA et al (2003) Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. J Biochem (Tokyo) 133(4):415–422Google Scholar
  35. Takahashi Y, Yong-Gonzalez V et al (2006) SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics 172(2):783–794PubMedCrossRefGoogle Scholar
  36. Torres-Rosell J, Sunjevaric I et al (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9(8):923–931PubMedCrossRefGoogle Scholar
  37. Uzunova K, Gottsche K et al (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175PubMedCrossRefGoogle Scholar
  38. Varshavsky A (2005) Ubiquitin fusion technique and related methods. Methods Enzymol 399:777–799PubMedCrossRefGoogle Scholar
  39. Wang BD, Butylin P et al (2006) Condensin function in mitotic nucleolar segregation is regulated by rDNA transcription. Cell Cycle 5(19):2260–2267PubMedGoogle Scholar
  40. Wang BD, Eyre D et al (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25(16):7216–7225PubMedCrossRefGoogle Scholar
  41. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6):430–440PubMedCrossRefGoogle Scholar
  42. Wohlschlegel JA, Johnson ES et al (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279(44):45662–45668PubMedCrossRefGoogle Scholar
  43. Wykoff DD, O’Shea EK (2005) Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol Cell Proteomics 4(1):73–83PubMedGoogle Scholar
  44. Xue Y, Zhou F et al (2006) SUMOsp: a web server for sumoylation site prediction. Nucleic Acids Res 34:W254–W257 (Web Server issue)PubMedCrossRefGoogle Scholar
  45. Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102(13):4777–4782PubMedCrossRefGoogle Scholar
  46. Zhou W, Ryan JJ et al (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279(31):32262–32268PubMedCrossRefGoogle Scholar

Copyright information

© DHHS 2007

Authors and Affiliations

  1. 1.Laboratory of Gene Regulation and Development, National Institutes of HealthNational Institute of Child Health and Human DevelopmentBethesdaUSA

Personalised recommendations