Chromosoma

, Volume 116, Issue 1, pp 29–40 | Cite as

Human chromosomal bands: nested structure, high-definition map and molecular basis

  • Maria Costantini
  • Oliver Clay
  • Concetta Federico
  • Salvatore Saccone
  • Fabio Auletta
  • Giorgio Bernardi
Research Article

Abstract

In this paper, we report investigations on the nested structure, the high-definition mapping, and the molecular basis of the classical Giemsa and Reverse bands in human chromosomes. We found the rules according to which the ∼3,200 isochores of the human genome are assembled in high (850-band) resolution bands, and the latter in low (400-band) resolution bands, so forming the nested mosaic structure of chromosomes. Moreover, we identified the borders of both sets of chromosomal bands at the DNA sequence level on the basis of our recent map of isochores, which represent the highest-resolution, ultimate bands. Indeed, beyond the 100-kb resolution of the isochore map, the guanine and cytosine (GC) profile of DNA becomes turbulent owing to the contribution of specific sequences such as exons, introns, interspersed repeats, CpG islands, etc. The isochore-based level of definition (100 kb) of chromosomal bands is much higher than the cytogenetic definition level (2–3 Mb). The major conclusions of this work concern the high degree of order found in the structure of chromosomal bands, their mapping at a high definition, and the solution of the long-standing problem of the molecular basis of chromosomal bands, as these could be defined on the basis of compositional DNA properties alone.

Supplementary material

References

  1. Aota S, Ikemura T (1986) Diversity in G+C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res 14:6345–6355PubMedCrossRefGoogle Scholar
  2. Bailly S, Guillemin C, Labrousse M (1973) Comparison du nombre et de la position des zones spécifiques révélées sur les chromosomes mitotiques de l’Amphibien Urodéle Pleurodeles waltlii Michah par les techniques de coloration au colorant de Giemsa et à la moutarde de quinacrine. CR Acad Sci Paris 276:1867–1869Google Scholar
  3. Bernardi G (1989) The isochore organization of the human genome. Ann Rev Genet 23:637–661PubMedCrossRefGoogle Scholar
  4. Bernardi G (2004, reprinted in 2005) Structural and evolutionary genomics. Natural selection in genome evolution. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  5. Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–957PubMedCrossRefGoogle Scholar
  6. Bostock CJ, Sumner AT (1978) The eukaryotic chromosome. North-Holland, Amsterdam NewYork OxfordGoogle Scholar
  7. Caspersson T, Farber S, Foley GE, Kudynowski J, Modest EJ, Simonsson E, Wagh U, Zech L (1968) Chemical differentiation along metaphase chromosomes. Exp Cell Res 49(1):219–222PubMedCrossRefGoogle Scholar
  8. Caspersson T, Zech L, Johansson C (1970) Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60:315–319PubMedCrossRefGoogle Scholar
  9. Claussen U, Lehrer H, Hliscs R, Kuechler A, Weise A, Liehr T (2005) The splitting of human chromosome bands into sub-bands. European Human Genetics Conference 2005 (http://www.eshg.org/eshg2005)
  10. Comings DE (1978) Mechanisms of chromosome banding and implications for chromosome structure. A Rev Genet 12:25–46CrossRefGoogle Scholar
  11. Corneo G, Ginelli E, Soave C, Bernardi G (1968) Isolation and characterization of mouse and guinea pig satellite DNA’s. Biochemistry 7:4373–4379PubMedCrossRefGoogle Scholar
  12. Costantini M, Clay O, Auletta F, Bernardi G (2006) An isochore map of human chromosomes. Genome Res 16:536–541PubMedCrossRefGoogle Scholar
  13. Cuny G, Soriano P, Macaya G, Bernardi G (1981) The major components of the mouse and human genomes: preparation, basic properties and compositional heterogeneity. Eur J Biochem 111:227–233CrossRefGoogle Scholar
  14. De Sario A, Geigl EM, Palmieri G, D’Urso M, Bernardi G (1996) A compositional map of human chromosome band Xq28. Proc Natl Acad Sci USA 93:1298–1302PubMedCrossRefGoogle Scholar
  15. De Sario A, Roizès G, Allegre N, Bernardi G (1997) A compositional map of the cen-q21 region of human chromosome 21. Gene 194:107–113PubMedCrossRefGoogle Scholar
  16. Dev VG, Warburton D, Miller OJ (1972) Giemsa banding of chromosomes. Lancet 1:1285PubMedCrossRefGoogle Scholar
  17. Dutrillaux B (1973) Nouveau système de marquage chromosomique: les bandes T. Chromosoma 41:395–402PubMedCrossRefGoogle Scholar
  18. Dutrillaux B, Lejeune J (1971) A new technique of analysis of the human karyotype. C R Acad Sci Hebd Seances Acad Sci D 272:2638–2640PubMedGoogle Scholar
  19. Dutrillaux B, Rethorè MO, Lejeune J (1975) Comparison of the karyotype of the orangutan (Pongo pygmaeus) to those of man, chimpanzee, and gorilla. Ann Genet 18:153–161PubMedGoogle Scholar
  20. Ellison JR, Barr HJ (1972) Quinacrine fluorescence of specific chromosome regions. Late replication and high A:T content in Samoia leonensis. Chromosoma 36(4):375–390PubMedCrossRefGoogle Scholar
  21. Federico C, Andreozzi L, Saccone S, Bernardi G (2000) Gene density in the Giemsa bands of human chromosomes. Chromosome Res 8:737–746PubMedCrossRefGoogle Scholar
  22. Filipski J, Thiery JP, Bernardi G (1973) An analysis of the bovine genome by Cs2SO4 Ag+ density gradient centrifugation. J Mol Biol 80:177–197PubMedCrossRefGoogle Scholar
  23. Francke U (1994) Digitized and differentially shaded human chromosome idiograms for genomic applications. Cytogenet Cell Genet 6:206–219CrossRefGoogle Scholar
  24. Furey TS, Haussler D (2003) Integration of the cytogenetic map with the draft human genome sequence. Hum Mol Genet 12:1037–1044PubMedCrossRefGoogle Scholar
  25. Furst A, Brown EH, Braunstein JD, Schildkraut CL (1981) Alpha-globulin sequences are located in a region of early-replicating DNA in murine erythroleukemia cells. Proc Natl Acad Sci USA 78:1023–1027PubMedCrossRefGoogle Scholar
  26. Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224:686–692PubMedCrossRefGoogle Scholar
  27. Holmquist GP (1992) Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet 51:17–37PubMedGoogle Scholar
  28. Holmquist G, Gray M, Porter T, Jordan J (1982) Characterization of Giemsa dark- and light-band DNA. Cell 31(1):121–129PubMedCrossRefGoogle Scholar
  29. Ikemura T, Aota S (1988) Alternative chromatic structure at CpG islands and quinacrine-brightness of human chromosomes. Global variation in G+C content along vertebrate genoma DNA. Possible correlation with chromosome band structures. J Mol Biol 60:909–920Google Scholar
  30. ISCN (1981) An international system for human cytogenetic nomenclature—high-resolution banding. Cytogenet Cell Genet 31:1–23Google Scholar
  31. ISCN (2005) An international system for the human cytogenetic nomenclature. In: Schweizer LG, Tommerup N (eds). Karger, BaselGoogle Scholar
  32. Korenberg JR, Engels WR (1978) Base ratio, DNA content, and quinacrine brightness of human chromosomes. Proc Natl Acad Sci USA 75:3382–3386PubMedCrossRefGoogle Scholar
  33. Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53(3):391–400PubMedCrossRefGoogle Scholar
  34. Lehrer H, Weise A, Michel S, Starke H, Mrasek K, Heller A, Kuechler A, Claussen U, Liehr T (2004) The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB). Cytogenet Genome Res 105:25–28PubMedCrossRefGoogle Scholar
  35. Lima-de-Faria A, Isaksson M, Olsson E (1980) Action of restriction endonucleases on the DNA and chromosmes of Muntiacus muntjak. Hereditas 92:267–273PubMedCrossRefGoogle Scholar
  36. Macaya G, Thiery JP, Bernardi G (1976) An approach to the organization of eukaryotic genomes at a macromolecular level. J Mol Biol 108:237–254PubMedCrossRefGoogle Scholar
  37. Pachmann U, Rigler R (1972) Quantum yield of acridines interacting with DNA of defined sequence. A basis for the explanation of acridine bands in chromosomes. Exp Cell Res 72(2):602–608PubMedCrossRefGoogle Scholar
  38. Pavliček A, Jabbari K, Pačes J, Pačes V, Hejnar J, Bernardi G (2001) Similar integration but different stability of Alus and LINEs in the human genome. Gene 276:39–45PubMedCrossRefGoogle Scholar
  39. Rabl C (1885) Über Zelltheilung. Morphologisches Jahrbuch 10:214–230Google Scholar
  40. Rooney ED (ed) (2001) Human cytogenetics: constitutional analysis. Oxford University Press, OxfordGoogle Scholar
  41. Saccone S, De Sario A, Della Valle G, Bernardi G (1992) The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl Acad Sci USA 89:4913–4917PubMedCrossRefGoogle Scholar
  42. Saccone S, De Sario A, Wiegant J, Raap AK, Della Valle G, Bernardi G (1993) Correlations between isochores and chromosomal bands in the human genome. Proc Natl Acad Sci USA 90:11929–11933PubMedCrossRefGoogle Scholar
  43. Saccone S, Cacciò S, Kusuda J, Andreozzi L, Bernardi G (1996) Identification of the gene-richest bands in human chromosomes. Gene 174:85–94PubMedCrossRefGoogle Scholar
  44. Saccone S, Federico C, Solovei I, Croquette MF, Della Valle G, Bernardi G (1999) Identification of the gene-richest bands in human prometaphase chromosomes. Chromosome Res 7:379–386PubMedCrossRefGoogle Scholar
  45. Saccone S, Pavliček A, Federico C, Pačes J, Bernardi G (2001) Gene, isochores and bands in human chromosomes 21 and 22. Chromosome Res 9:533–539PubMedCrossRefGoogle Scholar
  46. Saccone S, Federico C, Andreozzi L, D’Antoni S, Bernardi G (2002) Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300:169–178PubMedCrossRefGoogle Scholar
  47. Schimke RT (1982) Gene amplification. Cold Spring Harbor, New York, NY, USAGoogle Scholar
  48. Schmid M (1978) Chromosome banding in amphibians. Chromosoma 68:131–148CrossRefGoogle Scholar
  49. Schweizer D (1977) R-banding produced by DNase I digestion of chromomycin-stained chromosomes. Chromosoma 64:117–124PubMedCrossRefGoogle Scholar
  50. Stock AD, Mengden GA (1975) Chromosomes banding pattern conservatism in birds and non-homology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma 50:69–77PubMedCrossRefGoogle Scholar
  51. The National Foundation (1972) Standardization in human cytogenetics. Birth defects. In: Proceedings of Paris Conference 1971, Original article series, vol 8, no 7; also in Cytogenetics 11:317–362Google Scholar
  52. Thiery JP, Macaya G, Bernardi G (1976) An analysis of eukaryotic genomes by density gradient centrifugation. J Mol Biol 108:219–235PubMedCrossRefGoogle Scholar
  53. Weisblum B, de Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylaterich regions in DNA. Proc Natl Acad Sci USA 69:629–632PubMedCrossRefGoogle Scholar
  54. Wurster-Hill DH, Gray CW (1979) The interrelationship of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet Cell Genet 15:306–331Google Scholar
  55. Yunis JJ (1976) High resolution of human chromosomes. Science 191:1268–1270PubMedCrossRefGoogle Scholar
  56. Yunis JJ (1981) Mid-prophase human chromosome. The attainment of 2,000 bands. Hum Genet 56:291–298Google Scholar
  57. Yunis JJ, Tsai MY, Willey AM (1977) Molecular organization and function of the human genome. In: Yunis JJ (ed) Molecular structure of human chromosomes. Academic, New York, NYGoogle Scholar
  58. Zerial M, Salinas J, Filipski J, Bernardi G (1986) Gene distribution and nucleotide sequence organization in the human genome. Eur J Biochem 160:479–485PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Maria Costantini
    • 1
  • Oliver Clay
    • 1
  • Concetta Federico
    • 2
  • Salvatore Saccone
    • 2
  • Fabio Auletta
    • 1
  • Giorgio Bernardi
    • 1
  1. 1.Laboratory of Molecular EvolutionStazione Zoologica Anton DohrnNaplesItaly
  2. 2.Dipartimento di Biologia Animale “M. La Greca”University of CataniaCataniaItaly

Personalised recommendations