Advertisement

Chromosoma

, Volume 114, Issue 4, pp 212–229 | Cite as

The genome and the nucleus: a marriage made by evolution

Genome organisation and nuclear architecture
  • Helen A. Foster
  • Joanna M. Bridger
Review

Abstract

Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.

Keywords

Genome Organisation Nuclear Matrix Interphase Nucleus Chromosome Position Nuclear Periphery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abranches R, Beven AF, Aragon-Alcaide L, Shaw PJ (1998) Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol 143:5–12CrossRefPubMedGoogle Scholar
  2. Alexandrova O, Solovei I, Cremer T, David CN (2003) Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra. Chromosoma 112:190–200CrossRefPubMedGoogle Scholar
  3. Anderson RM, Stevens DL, Goodhead DT (2002) M-FISH analysis shows that complex chromosome arrangements induced by alpha-particle tracks are cumalative products of localised rearrangements. PNAS USA 99:12167–12172CrossRefPubMedGoogle Scholar
  4. Armstrong SJ, Kirkham AJ, Hulten MA (1994) XY chromosome behaviour in the germ-line of the human male: a FISH analysis of spatial orientation, chromatin condensation and pairing. Chromosome Res 2:445–452CrossRefPubMedGoogle Scholar
  5. Arsuaga J, Greulich-Bode KM, Vazquez M, Bruckner M, Hahnfeldt P, Brenner DJ, Sachs R, Hlatky L (2004) Chromosome spatial clustering inferred from radiogenic aberrations. Int J Radiat Biol 80:507–515CrossRefPubMedGoogle Scholar
  6. Barboro P, D'Arrigo C, Diaspro A, Mormino M, Alberti I, Parodi S, Patrone E, Balbi C (2002) Unraveling the organization of the internal nuclear matrix: RNA-dependent anchoring of NuMA to a lamin scaffold. Exp Cell Res 279:202–218CrossRefPubMedGoogle Scholar
  7. Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676–677PubMedGoogle Scholar
  8. Beil M, Durschmeid D, Paschke S, Schreiner B, Nolte U, Bruel A, Irinopoulou T (2002) Spatial distribution patterns of interphase centromeres during retinoic acid-induced differentiation of promyelocytic leukemia cells. Cytometry 47:217–225CrossRefPubMedGoogle Scholar
  9. Belmont AS, Straight AF (1998) In vivo visualization of chromosomes using lac operator-repressor binding. Trends Cell Biol 8:121–124PubMedGoogle Scholar
  10. Bickmore WA, Oghene K (1996) Visualizing the spatial relationships between defined DNA sequences and the axial region of extracted metaphase chromosomes. Cell 84:95–104CrossRefPubMedGoogle Scholar
  11. Bickmore WA, Teague P (2002) Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 10:707–715CrossRefPubMedGoogle Scholar
  12. Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81:18–25CrossRefPubMedGoogle Scholar
  13. Blumenthal SS, Clark GB, Roux SJ (2004) Biochemical and immunological characterization of pea nuclear intermediate filament proteins. Planta 218:965–975CrossRefPubMedGoogle Scholar
  14. Bode J, Benham C, Knopp A, Mielke C (2000) Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements). Crit Rev Eukaryot Gene Expr 10:73–90PubMedGoogle Scholar
  15. Bolzer A, Kreth G, Solovei I, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Complete 3D-maps of chromosome positions in human male fibroblast nuclei and prometaphase rosettes demonstrate a chromosome size dependent, probabilistic arrangement. PLoS Biology, (in press)Google Scholar
  16. Borden J, Manuelidis L (1988) Movement of the X chromosome in epilepsy. Science 242:1687–1691PubMedGoogle Scholar
  17. Boveri T (1888) Zellenstudien II. Die befruchtung und teilung des eies von ascaris megalocephala. Jena Zeit Naturw 22:685–882Google Scholar
  18. Boveri T (1909) Ueber geschlechstschromosomen bei nematoden. Arch Zellf 4:132–141Google Scholar
  19. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219PubMedGoogle Scholar
  20. Bridger JM, Bickmore WA (1998) Putting the genome on the map. Trends Genet 14:403–409CrossRefPubMedGoogle Scholar
  21. Bridger JM, Herrmann H, Munkel C, Lichter P (1998a) Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 111:1241–1253PubMedGoogle Scholar
  22. Bridger JM, Kill IR, Lichter P (1998b) Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res 6:13–24CrossRefPubMedGoogle Scholar
  23. Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152CrossRefPubMedGoogle Scholar
  24. Bridger JM, Meaburn KJ, Foster HA, Figgitt M, Bonne G, Levy N, Griffin DK, Kill IR (2004a) The role of nuclear structure in genomic health. Chromosome Res 12(suppl 1)Google Scholar
  25. Bridger JM, Reichenzeller M, Lichter P, Herrmann H (2004b) In: Hemmerich P, Diekmann S (eds) The interchromosomal domain compartment: an active space within the nucleus. Chapter in visions of the cell nucleusGoogle Scholar
  26. Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, Krausslich HG, Lichter P (2005) Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 302:180–193CrossRefPubMedGoogle Scholar
  27. Broers JL, Machiels BM, van Eys GJ, Kuijpers HJ, Manders EM, van Driel R, Ramaekers FC (1999) Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J Cell Sci 112:3463–3475PubMedGoogle Scholar
  28. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91 845:854CrossRefGoogle Scholar
  29. Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3:207–217CrossRefPubMedGoogle Scholar
  30. Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM (2005) Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J Cell Biol 168:375–387CrossRefPubMedGoogle Scholar
  31. Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM (2001) Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J 20:4399–4407CrossRefPubMedGoogle Scholar
  32. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439CrossRefPubMedGoogle Scholar
  33. Casolari JM, Brown CR, Drubin DA, Rando OJ, Silver PA (2005) Developmentally induced changes in transcriptional program alter spatial organisation across chromosomes. Genes Dev 19(1188):1198CrossRefGoogle Scholar
  34. Chaly N, Little JE, Brown DL (1985) Localization of nuclear antigens during preparation of nuclear matrices in situ. Can J Biochem Cell Biol 63:644–653PubMedGoogle Scholar
  35. Chambeyron S, Bickmore WA (2004a) Chromatin decondensation and nuclear reorganization of the Hoxb locus upon induction of transcription. Genes Dev 18:1119–1130CrossRefPubMedGoogle Scholar
  36. Chambeyron S, Bickmore WA (2004b) Does looping and clustering in the nucleus regulate gene expression? Curr Opin Cell Biol 16:256–262CrossRefPubMedGoogle Scholar
  37. Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA (2005) Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132:2215–2223CrossRefPubMedGoogle Scholar
  38. Chen HM, Zhou J, Dai YR (2000) Cleavage of lamin-like proteins in in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. FEBS Lett 480:165–168CrossRefPubMedGoogle Scholar
  39. Chevret E, Volpi EV, Sheer D (2000) Mini review: form and function in the human interphase chromosome. Cytogenet Cell Genet 90:13–21CrossRefPubMedGoogle Scholar
  40. Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445CrossRefPubMedGoogle Scholar
  41. Clemson CM, Lawrence JB (1996) Multifunctional compartments in the nucleus: insights from DNA and RNA localization. J Cell Biochem 62:181–190CrossRefPubMedGoogle Scholar
  42. Cohen M, Lee KK, Wilson KL, Gruenbaum Y (2001) Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem Sci 26:41–47CrossRefPubMedGoogle Scholar
  43. Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125:532–538CrossRefPubMedGoogle Scholar
  44. Craig JM, Bickmore WA (1994) The distribution of CpG islands in mammalian chromosomes. Nat Genet 7:376–382CrossRefPubMedGoogle Scholar
  45. Craig JM, Boyle S, Perry P, Bickmore WA (1997) Scaffold attachments within the human genome. J Cell Sci 110:2673–2682PubMedGoogle Scholar
  46. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301CrossRefPubMedGoogle Scholar
  47. Cremer C, Zorn C, Cremer T (1974) An ultraviolet laser microbeam for 257 nm. Microsc Acta 75:331–337PubMedGoogle Scholar
  48. Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80:235–246CrossRefPubMedGoogle Scholar
  49. Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Schertan H, Reid T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792PubMedGoogle Scholar
  50. Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10:179–212PubMedGoogle Scholar
  51. Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567CrossRefPubMedGoogle Scholar
  52. Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820CrossRefPubMedGoogle Scholar
  53. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131CrossRefPubMedGoogle Scholar
  54. Dehghani H, Dellaire G, Bazett-Jones DP (2005) Organization of chromatin in the interphase mammalian cell. Micron 36:95–108CrossRefPubMedGoogle Scholar
  55. de Lange T (1992) Human telomeres are attached to the nuclear matrix. EMBO J 11:717–724PubMedGoogle Scholar
  56. de Lara J, Wydner KL, Hyland KM, Ward WS (1993) Fluorescent in situ hybridization of the telomere repeat sequence in hamster sperm nuclear structures. J Cell Biochem 53:213–221CrossRefPubMedGoogle Scholar
  57. Dietzel S, Eils R, Satzler K, Bornfleth H, Jauch A, Cremer C, Cremer T (1998a) Evidence against a looped structure of the inactive human X-chromosome territory. Exp Cell Res 240:187–196CrossRefPubMedGoogle Scholar
  58. Dietzel S, Jauch A, Kienle D, Qu G, Holtgreve-Grez H, Eils R, Munkel C, Bittner M, Meltzer PS, Trent JM, Cremer T (1998b) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6:25–33CrossRefPubMedGoogle Scholar
  59. Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252:363–375CrossRefPubMedGoogle Scholar
  60. Dijkwel PA, Hamlin JL (1988) Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihydrofolate reductase domain of Chinese hamster ovary cells. Mol Cell Biol 8:5398–5409PubMedGoogle Scholar
  61. Djeliova V, Russev G, Anachkova B (2001) Dynamics of association of origins of DNA replication with the nuclear matrix during the cell cycle. Nucleic Acids Res 29:3181–3187CrossRefPubMedGoogle Scholar
  62. Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558CrossRefPubMedGoogle Scholar
  63. Dreger CK, Konig AR, Spring H, Lichter P, Herrmann H (2002) Investigation of nuclear architecture with a domain-presenting expression system. J Struct Biol 140:100–115CrossRefPubMedGoogle Scholar
  64. Edelmann P, Bornfleth H, Zink D, Cremer T, Cremer C (2001) Morphology and dynamics of chromosome territories in living cells. Biochim Biophys Acta 1551:M29–M39PubMedGoogle Scholar
  65. Eils R, Bertin E, Saracoglu K, Rinke B, Schrock E, Parazza F, Usson Y, Robert-Nicoud M, Stelzer EH, Chassery JM et al (1995) Application of confocal laser microscopy and three-dimensional Voronoi diagrams for volume and surface estimates of interphase chromosomes. J Microsc 177:150–161PubMedGoogle Scholar
  66. Eils R, Dietzel S, Bertin E, Schrock E, Speicher MR, Ried T, Robert-Nicoud M, Cremer C, Cremer T (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135:1427–1440CrossRefPubMedGoogle Scholar
  67. Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206CrossRefPubMedGoogle Scholar
  68. Enoch T, Peter M, Nurse P, Nigg EA (1991) p34cdc2 acts as a lamin kinase in fission yeast. J Cell Biol 112:797–807CrossRefPubMedGoogle Scholar
  69. Erber A, Riemer D, Hofemeister H, Bovenschulte M, Stick R, Panopoulou G, Lehrach H, Weber K (1999) Characterization of the Hydra lamin and its gene: a molecular phylogeny of metazoan lamins. J Mol Evol 49:260–271PubMedGoogle Scholar
  70. Federico C, Saccone S, Andreozzi L, Motta S, Russo V, Carels N, Bernardi G (2004) The pig genome: compositional analysis and identification of the gene-richest regions in chromosomes and nuclei. Gene 343:245–251CrossRefPubMedGoogle Scholar
  71. Ferguson-Smith MA, Yang F, Rens W, O'Brien PC (2005) The impact of chromosome sorting and painting on the comparative analysis of primate genomes. Cytogenet Genome Res 108:112–121CrossRefPubMedGoogle Scholar
  72. Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139:1597–1610CrossRefPubMedGoogle Scholar
  73. Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279CrossRefPubMedGoogle Scholar
  74. Foster HA, Griffin DK, Leese HJ, Sturmey RG, Stokes PJ, Abeydeera LR, Bridger JM (2004) Genome and nuclear architecture organisation during development and differentiation using the pig as a model organism. Chromosome Res 12(supp 1):3–4Google Scholar
  75. Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118:1811–1820CrossRefPubMedGoogle Scholar
  76. Fronicke L, Chowdhary BP, Scherthan H, Gustavsson I (1996) A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7:285–290CrossRefPubMedGoogle Scholar
  77. Furukawa K (1999) LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J Cell Sci 112:2485–2492PubMedGoogle Scholar
  78. Galiova G, Bartova E, Kozubek S (2004) Nuclear topography of beta-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells. Blood Cells Mol Dis 33:4–14CrossRefPubMedGoogle Scholar
  79. Garagna S, Zuccotti M, Thornhill A, Fernandez-Donoso R, Berrios S, Capanna E, Redi CA (2001) Alteration of nuclear architecture in male germ cells of chromosomally derived subfertile mice. J Cell Sci 114:4429–4434PubMedGoogle Scholar
  80. Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cytol 242:283–336PubMedGoogle Scholar
  81. Girard-Reydet C, Gregoire D, Vassetzky Y, Mechali M (2004) DNA replication initiates at domains overlapping with nuclear matrix attachment regions in the xenopus and mouse c-myc promoter. Gene 332:129–138CrossRefPubMedGoogle Scholar
  82. Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16:533–547CrossRefPubMedGoogle Scholar
  83. Gorisch SM, Richter K, Scheuermann MO, Herrmann H, Lichter P (2003) Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules. Exp Cell Res 289:282–294CrossRefPubMedGoogle Scholar
  84. Goto B, Okazaki K, Niwa O (2001) Cytoplasmic microtubular system implicated in de novo formation of a Rabl-like orientation of chromosomes in fission yeast. J Cell Sci 114:2427–2435PubMedGoogle Scholar
  85. Greaves IK, Rens W, Ferguson-Smith MA, Griffin D, Marshall Graves JA (2003) Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Res 11:503–512CrossRefPubMedGoogle Scholar
  86. Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219:604–611CrossRefPubMedGoogle Scholar
  87. Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9:569–584CrossRefPubMedGoogle Scholar
  88. He DC, Nickerson JA, Penman S (1990) Core filaments of the nuclear matrix. J Cell Biol 110:569–580CrossRefPubMedGoogle Scholar
  89. He DC, Martin T, Penman S (1991) Localization of heterogeneous nuclear ribonucleoprotein in the interphase nuclear matrix core filaments and on perichromosomal filaments at mitosis. Proc Natl Acad Sci U S A 88:7469–7473PubMedGoogle Scholar
  90. Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MA, Delany ME, Dodgson JB, Chinwalla AT, Cliften PF, Clifton SW, Delehaunty KD, Fronick C, Fulton RS, Graves TA, Kremitzki C et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716CrossRefPubMedGoogle Scholar
  91. Hochstrasser M, Sedat JW (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation. J Cell Biol 104:1471–1483CrossRefPubMedGoogle Scholar
  92. Holy J, Wessel G, Berg L, Gregg RG, Schatten G (1995) Molecular characterization and expression pattern of a B-type nuclear lamin during sea urchin embryogenesis. Dev Biol 168:464–478CrossRefPubMedGoogle Scholar
  93. Hozak P, Sasseville AM, Raymond Y, Cook PR (1995) Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J Cell Sci 108:635–644PubMedGoogle Scholar
  94. Huber MC, Graf T, Sippel AE, Bonifer C (1995) Dynamic changes in the chromatin of the chicken lysozyme gene domain during differentiation of multipotent progenitors to macrophages. DNA Cell Biol 14:397–402PubMedGoogle Scholar
  95. Hulspas R, Houtsmuller AB, Krijtenburg PJ, Bauman JG, Nanninga N (1994) The nuclear position of pericentromeric DNA of chromosome 11 appears to be random in G0 and non-random in G1 human lymphocytes. Chromosoma 103:286–292PubMedGoogle Scholar
  96. Hutchison CJ, Worman HJ (2004) A-type lamins: guardians of the soma? Nat Cell Biol 6:1062–1067CrossRefPubMedGoogle Scholar
  97. Hutchison CJ, Alvarez-Reyes M, Vaughan OA (2001) Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes? J Cell Sci 114:9–19PubMedGoogle Scholar
  98. Jackson DA (2003) The anatomy of transcription sites. Curr Opin Cell Biol 15:311–317CrossRefPubMedGoogle Scholar
  99. Jackson DA, Cook PR (1985) Transcription occurs at a nucleoskeleton. EMBO J 4:919–925PubMedGoogle Scholar
  100. Jenke AC, Stehle IM, Herrmann F, Eisenberger T, Baiker A, Bode J, Fackelmayer FO, Lipps HJ (2004) Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci U S A 101:11322–11327CrossRefPubMedGoogle Scholar
  101. Jensen AL, Brasch K (1985) Nuclear development in locust fat body: the influence of juvenile hormone on inclusion bodies and the nuclear matrix. Tissue Cell 17:117–130CrossRefPubMedGoogle Scholar
  102. Jimenez-Garcia LF, Spector DL (1993) In vivo evidence that transcription and splicing are coordinated by a recruiting mechanism. Cell 73:47–59CrossRefPubMedGoogle Scholar
  103. Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T (2004) Spatial genome organization during T-cell differentiation. Cytogenet Genome Res 105:292–301CrossRefPubMedGoogle Scholar
  104. Klinger HP (1958) The fine structure of the sex chromatin body. Exp Cell Res 14:207–211CrossRefPubMedGoogle Scholar
  105. Knoch A, Münkel C, Langowski J (1999) Three-dimensional organization of chromosome territories and the human interphase nucleus. In: high performance computing in science and engineering. Springer, Berlin Heidelberg New YorkGoogle Scholar
  106. Kozubek S, Lukasova E, Mareckova A, Skalnikova M, Kozubek M, Bartova E, Kroha V, Krahulcova E, Slotova J (1999) The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma 108:426–435CrossRefGoogle Scholar
  107. Kuroda M, Tanabe H, Yoshida K, Oikawa K, Saito A, Kiyuna T, Mizusawa H, Mukai K (2004) Alteration of chromosome positioning during adipocyte differentiation. J Cell Sci 117:5897–5903CrossRefPubMedGoogle Scholar
  108. Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135:1195–1205CrossRefPubMedGoogle Scholar
  109. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378CrossRefPubMedGoogle Scholar
  110. Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57:493–502CrossRefPubMedGoogle Scholar
  111. Lehner CF, Stick R, Eppenberger HM, Nigg EA (1987) Differential expression of nuclear lamin proteins during chicken development. J Cell Biol 105:577–587CrossRefPubMedGoogle Scholar
  112. Leitch AR, Mosgoller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci 95:335–341PubMedGoogle Scholar
  113. Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ (1995) CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol 130:507–518CrossRefPubMedGoogle Scholar
  114. Lichter P, Cremer T, Tang CJ, Watkins PC, Manuelidis L, Ward DC (1988) Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc Natl Acad Sci U S A 85:9664–9668PubMedGoogle Scholar
  115. Liu J, Rolef Ben Shahar T, Riemer D, Treinin M, Spann P, Weber K, Fire A, Gruenbaum Y (2000) Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell 11:3937–3947PubMedGoogle Scholar
  116. Luderus ME, van Steensel B, Chong L, Sibon OC, Cremers FF, de Lange T (1996) Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J Cell Biol 135:867–881CrossRefPubMedGoogle Scholar
  117. Lukasova E, Kozubek S, Kozubek M, Kroha V, Mareckova A, Skalnikova M, Bartova E, Slotova J (1999) Chromosomes participating in translocations typical of malignant hemoblastoses are also involved in exchange aberrations induced by fast neutrons. Radiat Res 151:375–384PubMedGoogle Scholar
  118. Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19CrossRefPubMedGoogle Scholar
  119. Lysak MA, Fransz PF, Ali HB, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697CrossRefPubMedGoogle Scholar
  120. Ma H, Siegel AJ, Berezney R (1999) Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J Cell Biol 146:531–542CrossRefPubMedGoogle Scholar
  121. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002a) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157:579–589CrossRefPubMedGoogle Scholar
  122. Mahy NL, Perry PE, Bickmore WA (2002b) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763CrossRefPubMedGoogle Scholar
  123. Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279:25567–25573CrossRefPubMedGoogle Scholar
  124. Manders EM, Kimura H, Cook PR (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144:813–821CrossRefPubMedGoogle Scholar
  125. Manuelidis L (1985) Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet 71:288–293CrossRefPubMedGoogle Scholar
  126. Manuelidis L, Borden J (1988) Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96:397–410CrossRefPubMedGoogle Scholar
  127. Markova D, Donev R, Patriotis C, Djondjurov L (1994) Interphase chromosomes of Friend-S cells are attached to the matrix structures through the centromeric/telomeric regions. DNA Cell Biol 13:941–951PubMedCrossRefGoogle Scholar
  128. Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7:825–842PubMedGoogle Scholar
  129. Martins S, Eikvar S, Furukawa K, Collas P (2003) HA95 and LAP2 beta mediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication. J Cell Biol 160:177–188CrossRefPubMedGoogle Scholar
  130. Matera AG (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9:302–309CrossRefPubMedGoogle Scholar
  131. McNulty AK, Saunders MJ (1992) Purification and immunological detection of pea nuclear intermediate filaments: evidence for plant nuclear lamins. J Cell Sci 103:407–414PubMedGoogle Scholar
  132. McQueen HA, Clark VH, Bird AP, Yerle M, Archibald AL (1997) CpG islands of the pig. Genome Res 7:924–931PubMedGoogle Scholar
  133. Meaburn K (2005) The role of nuclear architecture in genomic stability. PhD thesis, Brunel UniversityGoogle Scholar
  134. Meaburn KJ, Newbold RF, Cox H, Bridger JM (2004) Using the monochromosome hybrid cell lines to identify nuclear factors required for correct human genome organisation. Chromosome Res 12(supp 1):99Google Scholar
  135. Merkenschlager M, Amoils S, Roldan E, Rahemtulla A, O'connor E, Fisher AG, Brown KE (2004) Centromeric repositioning of coreceptor loci predicts their stable silencing and the CD4/CD8 lineage choice. J Exp Med 200:1437–1444CrossRefPubMedGoogle Scholar
  136. Minguez A, Moreno Diaz de la Espina S (1993) Immunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 106:431–439PubMedGoogle Scholar
  137. Mislow JM, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL, McNally EM (2002) Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett 525:135–140CrossRefPubMedGoogle Scholar
  138. Moreno Diaz De La Espina S, Samaniego R, Yu W, De La Torre C (2003) Intermediate filament proteins with nuclear functions: NuMA, lamin-like proteins and MFP1. Cell Biol Int 27:233–235CrossRefPubMedGoogle Scholar
  139. Mounkes LC, Burke B, Stewart CL (2001) The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc Med 11:280–285CrossRefPubMedGoogle Scholar
  140. Mounkes L, Kozlov S, Burke B, Stewart CL (2003) The laminopathies: nuclear structure meets disease. Curr Opin Genet Dev 13:223–230CrossRefPubMedGoogle Scholar
  141. Muller S, O'Brien PC, Ferguson-Smith MA, Wienberg J (1997) Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78:260–271PubMedGoogle Scholar
  142. Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee H (1999) Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J Cell Sci 112:525–535PubMedGoogle Scholar
  143. Nalepa G, Harper JW (2004) Visualization of a highly organized intranuclear network of filaments in living mammalian cells. Cell Motil Cytoskelet 59:94–108CrossRefGoogle Scholar
  144. Neri LM, Raymond Y, Giordano A, Capitani S, Martelli AM (1999) Lamin A is part of the internal nucleoskeleton of human erythroleukemia cells. J Cell Physiol 178:284–295CrossRefPubMedGoogle Scholar
  145. Nickerson J (2001) Experimental observations of a nuclear matrix. J Cell Sci 114:463–474PubMedGoogle Scholar
  146. Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141CrossRefPubMedGoogle Scholar
  147. Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108:501–513CrossRefPubMedGoogle Scholar
  148. Oegema K, Marshall WF, Sedat JW, Alberts BM (1997) Two proteins that cycle asynchronously between centrosomes and nuclear structures: Drosophila CP60 and CP190. J Cell Sci 110:1573–1583PubMedGoogle Scholar
  149. Okabe J, Eguchi A, Wadhwa R, Rakwal R, Tsukinoki R, Hayakawa T, Nakanishi M (2004) Limited capacity of the nuclear matrix to bind telomere repeat binding factor TRF1 may restrict the proliferation of mortal human fibroblasts. Hum Mol Genet 13:285–293CrossRefPubMedGoogle Scholar
  150. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071CrossRefPubMedGoogle Scholar
  151. Panning MM, Gilbert DM (2005) Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J Cell Biochem 95:74–82CrossRefPubMedGoogle Scholar
  152. Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432CrossRefPubMedGoogle Scholar
  153. Parada LA, McQueen PG, Munson PJ, Misteli T (2002) Conservation of relative chromosome positioning in normal and cancer cells. Curr Biol 12:1692–1697CrossRefPubMedGoogle Scholar
  154. Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44CrossRefPubMedGoogle Scholar
  155. Park PC, De Boni U (1998) specific conformation of the territory of chromosome 17 locates ERBB-2 sequences to a DNase-hypersensitive domain at the nuclear periphery. Chromosoma 107:87–95CrossRefPubMedGoogle Scholar
  156. Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876CrossRefPubMedGoogle Scholar
  157. Philimonenko VV, Flechon JE, Hozak P (2001) The nucleoskeleton: a permanent structure of cell nuclei regardless of their transcriptional activity. Exp Cell Res 264:201–210CrossRefPubMedGoogle Scholar
  158. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A 85:9138–9142PubMedGoogle Scholar
  159. Politz JC, Pederson T (2000) Review: movement of mRNA from transcription site to nuclear pores. J Struct Biol 129:252–257CrossRefPubMedGoogle Scholar
  160. Politz JC, Tuft RA, Pederson T, Singer RH (1999) Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr Biol 9:285–291CrossRefPubMedGoogle Scholar
  161. Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15:7108–7119PubMedGoogle Scholar
  162. Rabl K (1885) Ûber Zelltheilung. Gegenbaurs Morphol Jahrb 10:214–330Google Scholar
  163. Radichev I, Parashkevova A, Anachkova B (2005) Initiation of DNA replication at a nuclear matrix-attached chromatin fraction. J Cell Physiol 203:71–77CrossRefPubMedGoogle Scholar
  164. Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11:513–525CrossRefPubMedGoogle Scholar
  165. Rens W, O'Brien PC, Graves JA, Ferguson-Smith MA (2003) Localisation of chromosome regions in potoroo nuclei (Potorous tridactylus Marspialia: Potoroinae) Chromosoma 112:66–76CrossRefPubMedGoogle Scholar
  166. Richter K, Reichenzeller M, Gorisch SM, Schmidt U, Scheuermann MO, Herrmann H, Lichter P (2005) Characterization of a nuclear compartment shared by nuclear bodies applying ectopic protein expression and correlative light and electron microscopy. Exp Cell Res 303:128–137PubMedGoogle Scholar
  167. Riemer D, Dodemont H, Weber K (1993) A nuclear lamin of the nematode Caenorhabditis elegans with unusual structural features; cDNA cloning and gene organization. Eur J Cell Biol 62:214–223PubMedGoogle Scholar
  168. Riemer D, Wang J, Zimek A, Swalla BJ, Weber K (2000) Tunicates have unusual nuclear lamins with a large deletion in the carboxyterminal tail domain. Gene 255:317–325CrossRefPubMedGoogle Scholar
  169. Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378PubMedGoogle Scholar
  170. Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700CrossRefPubMedGoogle Scholar
  171. Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34:287–291CrossRefPubMedGoogle Scholar
  172. Sadoni N, Zink D (2004) Nascent RNA synthesis in the context of chromatin architecture. Chromosome Res 12:439–451CrossRefPubMedGoogle Scholar
  173. Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226CrossRefPubMedGoogle Scholar
  174. Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301:266–279CrossRefPubMedGoogle Scholar
  175. Scheuermann MO, Murmann AE, Richter K, Gorisch SM, Herrmann H, Lichter P (2005) Characterization of nuclear compartments identified by ectopic markers in mammalian cells with distinctly different karyotype. Chromosoma 114:39–53CrossRefPubMedGoogle Scholar
  176. Schirmer EC, Florens L, Guan T, Yates JR III, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382CrossRefPubMedGoogle Scholar
  177. Schook LB, Beever JE, Rogers J, Humphray S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K (2005) Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Compar Funct Genom 6:251–255CrossRefGoogle Scholar
  178. Shaw P, Doonan J (2005) The nucleolus. Playing by different rules? Cell Cycle 4:102–105PubMedGoogle Scholar
  179. Sherratt DJ (2003) Bacterial chromosome dynamics. Science 301:780–785CrossRefPubMedGoogle Scholar
  180. Simos G, Georgatos SD (1992) The inner nuclear membrane protein p58 associates in vivo with a p58 kinase and the nuclear lamins. EMBO J 11:4027–4036PubMedGoogle Scholar
  181. Smith DE, Gruenbaum Y, Berrios M, Fisher PA (1987) Biosynthesis and interconversion of Drosophila nuclear lamin isoforms during normal growth and in response to heat shock. J Cell Biol 105:771–790CrossRefPubMedGoogle Scholar
  182. Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44CrossRefPubMedGoogle Scholar
  183. Stahl A, Hartung M, Vagner-Capodano AM, Fouet C (1976) Chromosomal constitution of nucleolus-associated chromatin in man. Hum Genet 35:27–34CrossRefPubMedGoogle Scholar
  184. Steen RL, Collas P (2001) Mistargeting of B-type lamins at the end of mitosis: implications on cell survival and regulation of lamins A/C expression. J Cell Biol 153:621–626CrossRefPubMedGoogle Scholar
  185. Stein GS, Zaidi SK, Braastad CD, Montecino M, van Wijnen AJ, Choi JY, Stein JL, Lian JB, Javed A (2003) Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13:584–592CrossRefPubMedGoogle Scholar
  186. Stein GS, Stein JL, Lian JB, Van Wijnen AJ, Montecino M, Javed A, Zaidi SK, Young D, Choi JY, Pockwinse S (2004) Nuclear microenvironments: an architectural platform for the convergence and integration of transcriptional regulatory signals. Eur J Histochem 48:65–76PubMedGoogle Scholar
  187. Stromme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SM, Bruyere H, Lutcherath V, Gedeon AK, Wallace RH, Scheffer IE, Turner G, Partington M, Frints SG, Fryns JP, Sutherland GR, Mulley JC, Gecz J (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30:441–445CrossRefPubMedGoogle Scholar
  188. Su RC, Brown KE, Saaber S, Fisher AG, Merkenschlager M, Smale ST (2004) Centromeric repositioning of coreceptor loci predicts their stable silencing and the CD4/CD8 lineage choice. J Exp Med 200:1437–1444CrossRefPubMedGoogle Scholar
  189. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920CrossRefPubMedGoogle Scholar
  190. Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20:2867–2874CrossRefPubMedGoogle Scholar
  191. Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190PubMedGoogle Scholar
  192. Tajbakhsh J, Luz H, Bornfleth H, Lampel S, Cremer C, Lichter P (2000) Spatial distribution of GC- and AT-rich DNA sequences within human chromosome territories. Exp Cell Res 255:229–237CrossRefPubMedGoogle Scholar
  193. Tanabe H, Muller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002a) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429CrossRefPubMedGoogle Scholar
  194. Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T (2002b) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45PubMedGoogle Scholar
  195. Tanabe H, Kupper K, Ishida T, Neusser M, Mizusawa H (2005) Inter- and intra-specific gene-density-correlated radial chromosome territory arrangements are conserved in Old World monkeys. Cytogenet Genome Res 108:255–261CrossRefPubMedGoogle Scholar
  196. Thompson M, Haeusler RA, Good PD, Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302:1399–1401CrossRefPubMedGoogle Scholar
  197. Thomson I, Gilchrist S, Bickmore WA, Chubb JR (2004) The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 14:166–172CrossRefPubMedGoogle Scholar
  198. van Driel R, Humbel B, de Jong L (1991) The nucleus: a black box being opened. J Cell Biochem 47:311–316CrossRefPubMedGoogle Scholar
  199. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMedGoogle Scholar
  200. Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 101:10428–10433CrossRefPubMedGoogle Scholar
  201. Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147:13–24CrossRefPubMedGoogle Scholar
  202. Verschure PJ, Van Der Kraan I, Enserink JM, Mone MJ, Manders EM, Van Driel R (2002) Large-scale chromatin organization and the localization of proteins involved in gene expression in human cells. J Histochem Cytochem 50:1303–1312PubMedGoogle Scholar
  203. Verschure PJ, van der Kraan I, Manders EM, Hoogstraten D, Houtsmuller AB, van Driel R (2003) Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 4:861–866CrossRefPubMedGoogle Scholar
  204. Visintin R, Amon A (2000) The nucleolus: the magician's hat for cell cycle tricks. Curr Opin Cell Biol 12:752CrossRefPubMedGoogle Scholar
  205. Visser AE, Aten JA (1999) Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei. J Cell Sci 112:3353–3360PubMedGoogle Scholar
  206. Visser AE, Eils R, Jauch A, Little G, Bakker PJ, Cremer T, Aten JA (1998) Spatial distributions of early and late replicating chromatin in interphase chromosome territories. Exp Cell Res 243:398–407CrossRefPubMedGoogle Scholar
  207. Vlcek S, Just H, Dechat T, Foisner R (1999) Functional diversity of LAP2alpha and LAP2beta in postmitotic chromosome association is caused by an alpha-specific nuclear targeting domain. EMBO J 18:6370–6384CrossRefPubMedGoogle Scholar
  208. Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576PubMedGoogle Scholar
  209. Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160:685–697CrossRefPubMedGoogle Scholar
  210. Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293CrossRefPubMedGoogle Scholar
  211. Wei X, Samarabandu J, Devdhar RS, Siegel AJ, Acharya R, Berezney R (1998) Segregation of transcription and replication sites into higher order domains. Science 281:1502–1506CrossRefPubMedGoogle Scholar
  212. Wei X, Somanathan S, Samarabandu J, Berezney R (1999) Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 146:543–558CrossRefPubMedGoogle Scholar
  213. Weipoltshammer K, Schofer C, Almeder M, Philimonenko VV, Frei K, Wachtler F, Hozak P (1999) Intranuclear anchoring of repetitive DNA sequences: centromeres, telomeres, and ribosomal DNA. J Cell Biol 147:1409–1418CrossRefPubMedGoogle Scholar
  214. Williams RR (2003) Transcription and the territory: the ins and outs of gene positioning. Trends Genet 19:298–302CrossRefPubMedGoogle Scholar
  215. Williams RR, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272:163–175CrossRefPubMedGoogle Scholar
  216. Worman HJ, Yuan J, Blobel G, Georgatos SD (1988) A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci U S A 85:8531–8534PubMedGoogle Scholar
  217. Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271:14653–14656CrossRefPubMedGoogle Scholar
  218. Ye Q, Callebaut I, Pezhman A, Courvalin JC, Worman HJ (1997) Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J Biol Chem 272:14983–14989CrossRefPubMedGoogle Scholar
  219. Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114:4485–4498PubMedGoogle Scholar
  220. Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118:673–687CrossRefPubMedGoogle Scholar
  221. Zimek A, Stick R, Weber K (2003) Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J Cell Sci 116:2295–2302CrossRefPubMedGoogle Scholar
  222. Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251CrossRefPubMedGoogle Scholar
  223. Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247:176–188CrossRefPubMedGoogle Scholar
  224. Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1:93–106CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social CareBrunel UniversityUxbridgeUK

Personalised recommendations