, Volume 113, Issue 5, pp 258–269

Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes

  • Ales Pecinka
  • Veit Schubert
  • Armin Meister
  • Gregor Kreth
  • Marco Klatte
  • Martin A. Lysak
  • Jörg Fuchs
  • Ingo Schubert
Research Article


Differential painting of all five chromosome pairs of Arabidopsis thaliana revealed for the first time the interphase chromosome arrangement in a euploid plant. Side-by-side arrangement of heterologous chromosome territories and homologous association of chromosomes 1, 3 and 5 (on average in 35–50% of nuclei) are in accordance with the random frequency predicted by computer simulations. Only the nucleolus organizing region (NOR)-bearing chromosome 2 and 4 homologs associate more often than randomly, since NORs mostly attach to a single nucleolus. Somatic pairing of homologous ∼100 kb segments occurs less frequently than homolog association, not significantly more often than expected at random and not simultaneously along the homologs. Thus, chromosome arrangement in Arabidopsis differs from that in Drosophila (characterized by somatic pairing of homologs), in spite of similar genome size, sequence organization and chromosome number. Nevertheless, in up to 31.5% of investigated Arabidopsis nuclei allelic sequences may share positions close enough for homologous recombination.

Supplementary material

412_2004_316_ESM.pdf (410 kb)
(PDF 410 KB)


  1. Abranches R, Beven AF, Aragón-Alcaide L, Shaw PJ (1998) Transcriptional sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol 143:5–12CrossRefPubMedGoogle Scholar
  2. Aragón-Alcaide L, Reader S, Beven A, Shaw P, Miller T, Moore G (1997) Association of homologous chromosomes during floral development. Curr Biol 7:905–908CrossRefPubMedGoogle Scholar
  3. Bickmore WA, Chubb JR (2003) Chromosome position: now where was I? Curr Biol 13:R357–R359CrossRefPubMedGoogle Scholar
  4. Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152CrossRefPubMedGoogle Scholar
  5. Burgess SM, Kleckner N, Weiner BM (1999) Somatic pairing of homologs in budding yeast: existence and modulation. Genes Dev 13:1627–1641PubMedGoogle Scholar
  6. Chandley AC, Speed RM, Leitch AR (1996) Different distributions of homologous chromosomes in adult human Sertoli cells and in lymphocytes signify nuclear differentiation. J Cell Sci 109:773–776PubMedGoogle Scholar
  7. Cornforth MN, Greulich-Bode KM, Loucas BD, Arsuaga J, Vásquez M, Sachs RK, Brückner M, Molls M, Hahnfeldt P, Hlatky L, Brenner DJ (2002) Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol 159:237–244CrossRefPubMedGoogle Scholar
  8. Cremer T, Cremer C (2001) Chromosome territories nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301CrossRefPubMedGoogle Scholar
  9. Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567CrossRefPubMedGoogle Scholar
  10. Csink AK, Henikoff S (1998) Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol 143:13–22CrossRefPubMedGoogle Scholar
  11. Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558CrossRefPubMedGoogle Scholar
  12. Fransz P, de Jong JH, Lysak MA, Ruffini-Castiglione M, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589CrossRefPubMedGoogle Scholar
  13. Fuchs J, Houben A, Brandes A, Schubert I (1996) Chromosome ‘painting’ in plants—a feasible technique? Chromosoma 104:315–320CrossRefPubMedGoogle Scholar
  14. Fuchs J, Lorenz A, Loidl J (2002) Chromosome associations in budding yeast caused by integrated tandemly repeated transgenes. J Cell Sci 115:1213–1220PubMedGoogle Scholar
  15. Fung JC, Marshall WF, Dernburg A, Agard DA, Sedat JW (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol 141:5–20CrossRefPubMedGoogle Scholar
  16. Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112:751–764CrossRefPubMedGoogle Scholar
  17. Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9:569–584CrossRefPubMedGoogle Scholar
  18. Heitz E (1928) Heterochromatin der Moose I. Jahrb Wiss Bot 69:762–818Google Scholar
  19. Henegariu O, Bray-Ward P, Ward DC (2000) Custom fluorescent-nucleotide synthesis as an alternative method for nucleic acid labeling. Nat Biotechnol 18:345–348CrossRefPubMedGoogle Scholar
  20. Hiraoka Y, Dernburg AF, Parmelee SJ, Rykowski MC, Agard DA, Sedat JW (1993) The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120:591–600CrossRefPubMedGoogle Scholar
  21. Kato N, Lam E (2003) Chromatin of endoreduplicated pavement cells has a greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J Cell Sci 116:2195–2201CrossRefPubMedGoogle Scholar
  22. Kozubek S, Lukášová E, Jirsová P, Koutná I, Kozubek M, Ganová A, Bártová E, Falk M, Paseková R (2002) 3D structure of the human genome: order in randomness. Chromosoma 111:321–331PubMedGoogle Scholar
  23. Kreth G, Finsterle J, Hase J von, Cremer M, Cremer C (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys J 86:2803–2812PubMedGoogle Scholar
  24. Lam E, Kato N, Watanabe K (2004) Visualizing chromosome structure/organization. Annu Rev Plant Biol 55:537–554CrossRefPubMedGoogle Scholar
  25. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234PubMedGoogle Scholar
  26. Lorenz A, Fuchs J, Bürger R, Loidl J (2003) Chromosome pairing does not contribute to nuclear architecture in vegetative yeast cells. Eukaryot Cell 2:856–866CrossRefPubMedGoogle Scholar
  27. Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697CrossRefPubMedGoogle Scholar
  28. Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res 11:195–204CrossRefPubMedGoogle Scholar
  29. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002a) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157:579–589CrossRefPubMedGoogle Scholar
  30. Mahy NL, Perry PE, Bickmore WA (2002b) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763CrossRefPubMedGoogle Scholar
  31. Martínez-Pérez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207CrossRefPubMedGoogle Scholar
  32. McKee BD (2004) Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim Biophys Acta 1677:165–180CrossRefPubMedGoogle Scholar
  33. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092Google Scholar
  34. Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee H-Y (1999) Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J Cell Sci 112:525–535PubMedGoogle Scholar
  35. Parada LA, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432CrossRefPubMedGoogle Scholar
  36. Parada LA, Roix JJ, Misteli T (2003) An uncertainty principle in chromosome positioning. Trends Cell Biol 13:393–396CrossRefPubMedGoogle Scholar
  37. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85:9138–9142PubMedGoogle Scholar
  38. Prieto P, Santos AP, Moore G, Shaw P (2004) Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112:300–307CrossRefPubMedGoogle Scholar
  39. Rabl C (1885) Über Zelltheilung. Morphol Jahrbuch 10:214–330Google Scholar
  40. Rieger R, Michaelis A, Schubert I, Meister A (1973) Somatic interphase pairing of Vicia chromosomes as inferred from the hom/het ratio of induced chromatid interchanges. Mutat Res 20:295–298CrossRefGoogle Scholar
  41. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  42. Schubert I, Rieger R, Fuchs J, Pich U (1994) Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba). Mutat Res 325:1–5CrossRefPubMedGoogle Scholar
  43. Schubert I, Shi F, Fuchs J, Endo TR (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J 14:489–495CrossRefGoogle Scholar
  44. Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69CrossRefPubMedGoogle Scholar
  45. Schubert I, Pecinka A, Meister A, Schubert V, Klatte M, Jovtchev G (2004) DNA damage processing and aberration formation in plants. Cytogenet Genome Res 104:104–108CrossRefPubMedGoogle Scholar
  46. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324Google Scholar
  47. Schwarzacher T, Anamthawat-Jonsson K, Harrison GE, Islam AKMR, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ et al (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786Google Scholar
  48. Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JB, Kakutani T, Koornneef M, Peeters AJM (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802PubMedGoogle Scholar
  49. Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99:4424–4429CrossRefPubMedGoogle Scholar
  50. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefPubMedGoogle Scholar
  51. Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576PubMedGoogle Scholar
  52. Walter J, Schmelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1 but is stably maintained during subsequent interphase stages. J Cell Biol 160:685–697CrossRefPubMedGoogle Scholar
  53. Ward PB (2002) FISH probes and labelling techniques. In: Beatty B, Mai S, Squire J (eds) FISH. Oxford University, Oxford, pp 5–28Google Scholar
  54. Williams RRE, Fisher AG (2003) Chromosomes positions please! Nat Cell Biol 5:388–390CrossRefPubMedGoogle Scholar
  55. Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EHK (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ales Pecinka
    • 1
  • Veit Schubert
    • 1
  • Armin Meister
    • 1
  • Gregor Kreth
    • 2
  • Marco Klatte
    • 1
  • Martin A. Lysak
    • 1
  • Jörg Fuchs
    • 1
  • Ingo Schubert
    • 1
  1. 1.Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Kirchhoff Institute for PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations