Chromosoma

, Volume 113, Issue 2, pp 53–61

The Nijmegen breakage syndrome gene and its role in genome stability

  • Kenta Iijima
  • Kenshi Komatsu
  • Shinya Matsuura
  • Hiroshi Tauchi
Review

Abstract

NBS1 is the key regulator of the RAD50/MRE11/NBS1 (R/M/N) protein complex, a sensor and mediator for cellular DNA damage response. NBS1 potentiates the enzymatic activity of MRE11 and directs the R/M/N complex to sites of DNA damage, where it forms nuclear foci by interacting with phosphorylated H2AX. The R/M/N complex also activates the ATM kinase, which is a major kinase involved in the activation of DNA damage signal pathways. The ATM requires the R/M/N complex for its own activation following DNA damage, and for conformational change to develop a high affinity for target proteins. In addition, association of NBS1 with PML, the promyelocytic leukemia protein, is required to form nuclear bodies, which have various functions depending on their location and composition. These nuclear bodies function not only in response to DNA damage, but are also involved in telomere maintenance when they are located on telomeres. In this review, we describe the role of NBS1 in the maintenance of genetic stability through the activation of cell-cycle checkpoints, DNA repair, and protein relocation.

References

  1. Antoccia A, Stumm M, Saar K, Ricordy R, Maraschio P, Tanzarella C (1999) Impaired p53-mediated DNA damage response, cell-cycle disturbance and chromosome aberrations in Nijmegen breakage syndrome lymphoblastoid cell lines. Int J Radiat Biol 75:583–591CrossRefPubMedGoogle Scholar
  2. Bakkenist CJ, Kastan M (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506CrossRefPubMedGoogle Scholar
  3. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW (2002) Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA 99:8173–8178CrossRefPubMedGoogle Scholar
  4. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467CrossRefPubMedGoogle Scholar
  5. Buscemi G, Savio C, Zannini L, Micciche F, Masnada D, Nakanishi M, Tauchi H, Komatsu K, Mizutani S, Khanna K, Chen P, Concannon P, Chessa L, Delia D (2001) Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 21:5214–5222CrossRefPubMedGoogle Scholar
  6. Carnone R, Pearson M, Minucci S, Pelicci PG (2002) PML NBs associate with the hMre11 complex and p53 at sites of irradiation induce DNA damage. Oncogene 21:1633–1640CrossRefPubMedGoogle Scholar
  7. Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD (2003) The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22:6610–6020CrossRefPubMedGoogle Scholar
  8. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927CrossRefPubMedGoogle Scholar
  9. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5:675–679CrossRefPubMedGoogle Scholar
  10. Chen C, Kolodner RD (1999) Gross chromosomal rearrangements in Saccharomycescerevisiae replication and recombination defective mutants. Nat Genet 23:81–85CrossRefPubMedGoogle Scholar
  11. Cheng W-H, von Kobbe C, Opresko PL, Arthur LM, Komatsu K, Seidman MM, Carney JP, Bohr VA (2004) Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279:21169–21176CrossRefPubMedGoogle Scholar
  12. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327CrossRefPubMedGoogle Scholar
  13. Daoudal-Cotterell S, Gallego ME, White CI (2002) The plant Rad50-Mre11 protein complex. FEBS Lett 516:164–166CrossRefPubMedGoogle Scholar
  14. Dong Z, Zhong Q, Chen PL (1999) The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. J Biol Chem 274:19513–19516CrossRefPubMedGoogle Scholar
  15. Desai-Mehta A, Cerosaletti KM, Concannon P (2001) Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol 21:2184–2191CrossRefPubMedGoogle Scholar
  16. Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004CrossRefPubMedGoogle Scholar
  17. Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ, Yaffe MB (2000) The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6:1169–1182CrossRefPubMedGoogle Scholar
  18. Ehrenstein MR, Rada C, Jones AM, Milstein C, Neuberger MS (2001) Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination. Proc Natl Acad Sci USA 98:14553–14558CrossRefPubMedGoogle Scholar
  19. van Engelen BG, Hiel JA, Gabreels FJ, van den Heuvel LP, van Gent DC, Weemaes CM (2001) Decreased immunoglobulin class switching in Nijmegen breakage syndrome due to the DNA repair defect. Hum Immunol 62:1324–1327CrossRefPubMedGoogle Scholar
  20. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847CrossRefPubMedGoogle Scholar
  21. Falck J, Petrini JHJ, Williams BR, Lukas J, Bartek J (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 30:290–294CrossRefPubMedGoogle Scholar
  22. Giannini G, Ristori E, Cerignoli F, Rinaldi C, Zani M, Viel A, Ottini L, Crescenzi M, Martinotti S, Bignami M, Frati L, Screpanti I, Gulino A (2002) Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep 3:248–254CrossRefPubMedGoogle Scholar
  23. Girard PM, Riballo E, Begg AC, Waugh A, Jeggo PA (2002) Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Oncogene 21:4191–4199CrossRefPubMedGoogle Scholar
  24. Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, Bartek J, Jackson SP (2003) MDC1 is required for intra-S-phase DNA damage checkpoint. Nature 421:952–956CrossRefPubMedGoogle Scholar
  25. Haber JE (1998) The many interfaces of Mre11. Cell 95:583–586CrossRefPubMedGoogle Scholar
  26. Harfst E, Cooper S, Neubauer S, Distel L, Grawunder U (2000) Normal V(D)J recombination in cells from patients with Nijmegen breakage syndrome. Mol Immunol 37:915–929CrossRefPubMedGoogle Scholar
  27. Hopfner KP, Karcher A, Shin D, Fairley C, Tainer JA, Carney JP (2000) Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine. J Bacteriol 182:6036–6041CrossRefPubMedGoogle Scholar
  28. Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566CrossRefPubMedGoogle Scholar
  29. Horejsi Z, Falck J, Bakkenist CJ, Kastan M, Lukas J, Bartek J (2004) Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 1–6 (advance online publication, March 2004)Google Scholar
  30. Ito A, Tauchi H, Kobayashi J, Morishima K, Nakamura A, Hirokawa Y, Matsuura S, Ito K, Komatsu K (1999) Expression of full-length NBS1 protein restores normal radiation responses in cells from Nijmegen breakage syndrome patients. Biochem Biophys Res Commun 265:716–721CrossRefPubMedGoogle Scholar
  31. de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135CrossRefPubMedGoogle Scholar
  32. Jongmans W, Vuillaume M, Chrzanowska K, Smeets D, Sperling K, Hall J (1997) Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol Cell Biol 17:5016–5022PubMedGoogle Scholar
  33. Kang J, Bronson RT, Xu Y (2002) Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21:1447–1455CrossRefPubMedGoogle Scholar
  34. Kim ST, Xu B, Kastan MB (2002) Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16:560–570CrossRefPubMedGoogle Scholar
  35. Kobayashi J, Tauchi H, Sakamoto S, Nakamura A, Morishima K, Matuura S, Kobayashi T, Tamai K, Tanimoto K, Komatsu K (2002) NBS1 localizes to γ-H2AX foci through interaction with the FHA/BRCT domain. Curr Biol 12:1846–1851CrossRefPubMedGoogle Scholar
  36. Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96CrossRefPubMedGoogle Scholar
  37. Lee JH, Ghirlando R, Bhaskara V, Hoffmeyer MR, Gu J, Paull TT (2003) Regulation of Mre11/Rad50 by Nbs1: effects on nucleotide-dependent DNA binding and association with ATLD mutant complexes. J Biol Chem 278:45171–45181CrossRefPubMedGoogle Scholar
  38. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617CrossRefPubMedGoogle Scholar
  39. Lombard DB, Guarente L (2000) Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res 60:2331–2334PubMedGoogle Scholar
  40. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5:255–260CrossRefPubMedGoogle Scholar
  41. Manis JP, Gu Y, Lansford R, Sonoda E, Ferrini R, Davidson L, Rajewsky K, Alt FW (1998) Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J Exp Med 187:2081–2089CrossRefPubMedGoogle Scholar
  42. Matsuura K, Balmukhanov T, Tauchi H, Weemaes C, Smeets D, Chrzanowska K, Endou S, Matsuura S, Komatsu K (1998) Radiation induction of p53 in cells from Nijmegen breakage syndrome is defective but not similar to ataxia-telangiectasia. Biochem Biophys Res Commun 242:602–607CrossRefPubMedGoogle Scholar
  43. Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21:281–288 (Erratum in Mol Cell Biol 21:1898)Google Scholar
  44. Naka K, Ikeda K, Motoyama N (2002) Recruitment of NBS1 into PML oncogenic domains via interaction with SP100 protein. Biochem Biophys Res Commun 299:863–871CrossRefPubMedGoogle Scholar
  45. Nelms BE, Master RS, Mackay JF, Lagally MG, Petrini JHJ (1998) In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280:590–592CrossRefPubMedGoogle Scholar
  46. Ohta K, Nicolas A, Furuse M, Nabetani A, Ogawa H, Shibata T (1998) Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc Natl Acad Sci USA 95:646–651CrossRefPubMedGoogle Scholar
  47. Painter RB, Young BR (1980) Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA 77:7315–7317PubMedGoogle Scholar
  48. Paull TT, Gellert M (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13:1276–1288PubMedGoogle Scholar
  49. Petersen S, Casellas R, Reina-San-Martin B, Chen HT, Difilippantonio MJ, Wilson PC, Hanitsch L, Celeste A, Muramatsu M, Pilch DR, Redon C, Ried T, Bonner WM, Honjo T, Nussenzweig MC, Nussenzweig A (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414:660–665CrossRefPubMedGoogle Scholar
  50. Pichierri P, Franchitto A (2004) Werner syndrome protein, the MRE11 complex and ATR: menage-a-trois in guarding genome stability during DNA replication? BioEssays 26:306–313CrossRefPubMedGoogle Scholar
  51. Ranganathan V, Heine WF, Ciccone DN, Rudolph KL, Wu X, Chang S, Hai H, Ahearn IM, Livingston DM, Resnick I, Rosen F, Seemanova E, Jarolim P, DePinho RA, Weaver DT (2001) Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr Biol 11:962–966CrossRefPubMedGoogle Scholar
  52. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868CrossRefPubMedGoogle Scholar
  53. Shiloh Y (1997) Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet 31:635–662CrossRefPubMedGoogle Scholar
  54. Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M, Takeda S (1999) Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol 19:5166–5169PubMedGoogle Scholar
  55. Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99:577–587CrossRefPubMedGoogle Scholar
  56. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966CrossRefPubMedGoogle Scholar
  57. Takakuwa T, Luo WJ, Francisca Ham M, Aozasa K (2004) A 50-bp insertion from intron 2 between exons 2 and 3 of NBS1 may be a spliced variant. Genes Chromosomes Cancer 39:341–342CrossRefPubMedGoogle Scholar
  58. Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20:6476–6482CrossRefPubMedGoogle Scholar
  59. Tauchi H (2000) Positional cloning and functional analysis of the gene for Nijmegen breakage syndrome, NBS1. J Radiat Res 41:9–17CrossRefGoogle Scholar
  60. Tauchi H, Kobayashi J, Morishima K, Matsuura S, Nakamura A, Shiraishi T, Ito E, Msnada D, Delia D, Komatsu K (2001) The Forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation, but not essential for hRAD50/hMRE11/NBS1 complex DNA repair activity. J Biol Chem 276:12–15CrossRefPubMedGoogle Scholar
  61. Tauchi H, Kobayashi J, Morishima K, van Gent D, Shiraishi T, Verkaik NS, van Heems D, Ito E, Nakamura A, Sonoda E, Takata M, Takeda S, Matsuura S, Komatsu K (2002) Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420:93–98CrossRefPubMedGoogle Scholar
  62. Ueno M, Nakazaki T, Akamatsu Y, Watanabe K, Tomita K, Lindsay HD, Shinagawa H, Iwasaki H (2003) Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. Mol Cell Biol 23:6553–6563CrossRefPubMedGoogle Scholar
  63. Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276:47759–47762CrossRefPubMedGoogle Scholar
  64. Wilda M, Demuth I, Concannon P, Sperling K, Hameister H (2000) Expression pattern of the Nijmegen breakage syndrome gene, Nbs1, during murine development. Hum Mol Genet 9:1739–1744CrossRefPubMedGoogle Scholar
  65. Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JH (2002) A murine model of Nijmegen breakage syndrome. Curr Biol 12:648–653CrossRefPubMedGoogle Scholar
  66. Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O’Neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G, Livingston DM, Weaver DT (2000a) ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405:477–482CrossRefPubMedGoogle Scholar
  67. Wu G, Lee WH, Chen PL (2000b) NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem 275:30618–30622CrossRefPubMedGoogle Scholar
  68. Wu G, Jiang X, Lee WH, Chen PL (2003) Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen breakage syndrome 1. Cancer Res 63:2589–2595PubMedGoogle Scholar
  69. Yamazaki V, Wegner RD, Kirchgessner CU (1998) Characterization of cell cycle checkpoint responses after ionizing radiation in Nijmegen breakage syndrome cells. Cancer Res 58:2316–2322PubMedGoogle Scholar
  70. Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J (2002) SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 16:571–582CrossRefPubMedGoogle Scholar
  71. Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179PubMedGoogle Scholar
  72. Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405:473–477CrossRefPubMedGoogle Scholar
  73. Zhao S, Rehthal W, Lee EY (2002) Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res 30:4815–4822CrossRefPubMedGoogle Scholar
  74. Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25:347–352CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Kenta Iijima
    • 1
  • Kenshi Komatsu
    • 2
  • Shinya Matsuura
    • 3
  • Hiroshi Tauchi
    • 1
  1. 1.Department of Environmental Sciences, Faculty of ScienceIbaraki UniversityIbarakiJapan
  2. 2.Department of Genome Repair Dynamics, Radiation Biology CenterKyoto UniversityKyotoJapan
  3. 3.Department of Radiation Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan

Personalised recommendations