, Volume 112, Issue 7, pp 350–359 | Cite as

Cytogenetic and immuno-FISH analysis of the 4q subtelomeric region, which is associated with facioscapulohumeral muscular dystrophy

  • Fan Yang
  • Chunbo Shao
  • Vettaikorumakankav Vedanarayanan
  • Melanie EhrlichEmail author
Research Article


Facioscapulohumeral muscular dystrophy (FSHD) is caused by the shortening of a copy-number polymorphic array of 3.3 kb repeats (D4Z4) at one allelic 4q35.2 region. How this contraction of a subtelomeric tandem array causes FSHD is unknown but indirect evidence suggests that a short array has a cis effect on a distant gene or genes. It was hypothesized that the length of the D4Z4 array determines whether or not the array and a large proximal region are heterochromatic and thereby controls gene expression in cis. To test this, we used fluorescence in situ hybridization probes with FSHD and control myoblasts to characterize the distal portion of 4q35.2 with respect to the following: intense staining with the chromatin dye 4′,6-diamidino-2-phenylindole; association with constitutively heterochromatic foci; extent of binding of heterochromatin protein 1α; histone H3 methylation at lysine 9 and lysine 4; histone H4 lysine 8 acetylation; and replication timing within S-phase. Our results indicate that 4q35.2 does not resemble constitutive heterochromatin in FSHD or control myoblasts. Furthermore, in these analyses, the allelic 4q35.2 regions of FSHD myoblasts did not behave differently than those of control myoblasts. Other models for how D4Z4 array contraction causes long-distance regulation of gene expression in cis need to be tested.


Replication Timing Constitutive Heterochromatin Fish Signal Fish Probe Facioscapulohumeral Muscular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are very grateful to Luis Marrero for help with the deconvolution microscope and Drs. Guanchao Jiang, Petra G. van Overveld, and Silvere van der Maarel for help with characterizing the copy numbers of samples. This research was supported in part by NIH Grant R21 AR48315, FSH Society Grant FSHS-MB-06, and MDA Grant 3551.


  1. Amrichova J, Lukasova E, Kozubek S, Kozubek M (2003) Nuclear and territorial topography of chromosome telomeres in human lymphocytes. Exp Cell Res 289:11–26CrossRefPubMedGoogle Scholar
  2. Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci U S A 97:6634–6639Google Scholar
  3. Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292:2075–2077PubMedGoogle Scholar
  4. Berezney R, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108:471–484CrossRefPubMedGoogle Scholar
  5. Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148CrossRefPubMedGoogle Scholar
  6. Boggs BA, Chinault AC (1997) Analysis of DNA replication by fluorescence in situ hybridization. Methods 13:259–270Google Scholar
  7. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854PubMedGoogle Scholar
  8. Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36CrossRefPubMedGoogle Scholar
  9. Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252:363–375CrossRefPubMedGoogle Scholar
  10. Ehrlich M (2004) Exploring hypotheses about the molecular etiology of FSHD: loss of heterochromatin spreading and other long-range interaction models. In: Cooper DN and Upadhyaya M (eds) Facioscapulohumeral muscular dystrophy: molecular cell biology and clinical medicine. BIOS, Oxford, UK pp 253–276Google Scholar
  11. Gabellini D, Green MR, Tupler R (2002) Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110:339–348CrossRefPubMedGoogle Scholar
  12. Gabriels J, Beckers MC, Ding H, De Vriese A, Plaisance S, van der Maarel SM, Padberg GW, Frants RR, Hewitt JE, Collen D, Belayew A (1999) Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene 236:25–32CrossRefPubMedGoogle Scholar
  13. Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59PubMedGoogle Scholar
  14. Gilbert DM (2002) Replication timing and transcriptional control: beyond cause and effect. Curr Opin Cell Biol 14:377–383CrossRefPubMedGoogle Scholar
  15. Haaf T, Schmid M (1991) Chromosome topology in mammalian interphase nuclei. Exp Cell Res 192:325–332PubMedGoogle Scholar
  16. Hewitt JE, Lyle R, Clark LN, Valleley EM, Wright TJ, Wijmenga C, van Deutekom JC, Francis F, Sharpe PT, Hofker M, Frants RF, Williamson R (1994) Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystrophy. Hum Mol Genet 3: 1287–1295PubMedGoogle Scholar
  17. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedGoogle Scholar
  18. Jiang G, Yang F, Van Overveld PG, Vedanarayanan V, Van Der Maarel S, Ehrlich M (2003) Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Hum Mol Genet 12:2909-2921CrossRefPubMedGoogle Scholar
  19. Jiang G, Yang F, Sanchez C, Ehrlich M (2004) Histone modification in constitutive heterochromatin vs. unexpressed euchromatin in human cells. J Cell Biochem (in press)Google Scholar
  20. Johnson CA, O’Neill LP, Mitchell A, Turner BM (1998) Distinctive patterns of histone H4 acetylation are associated with defined sequence elements within both heterochromatic and euchromatic regions of the human genome. Nucleic Acids Res 26:994–1001CrossRefPubMedGoogle Scholar
  21. Knight SJ, Lese CM, Precht KS, Kuc J, Ning Y, Lucas S, Regan R, Brenan M, Nicod A, Lawrie NM, Cardy DL, Nguyen H, Hudson TJ, Riethman HC, Ledbetter DH, Flint J (2000) An optimized set of human telomere clones for studying telomere integrity and architecture. Am J Hum Genet 67:320–332PubMedGoogle Scholar
  22. Lemmers RJ, de Kievit P, van Geel M, van der Wielen MJ, Bakker E, Padberg GW, Frants RR, van der Maarel SM (2001) Complete allele information in the diagnosis of facioscapulohumeral muscular dystrophy by triple DNA analysis. Ann Neurol 50:816–819CrossRefPubMedGoogle Scholar
  23. Lemmers RJ, de Kievit P, Sandkuijl L, Padberg GW, van Ommen GJ, Frants RR, van der Maarel SM (2002) Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat Genet 32:235–236CrossRefPubMedGoogle Scholar
  24. Li Y, Kirschmann D, Wallrath LL (2002) Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci U S A 99:16462–16469Google Scholar
  25. Lunt P (2000) Facioscapulohumeral muscular dystrophy: diagnostic and molecular aspects. In: Deymeer F (ed) Neuromuscular diseases: from basic mechanisms to clinical management. Monographs of clinical neuroscience. Karger, Basel, pp 44–60Google Scholar
  26. Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334CrossRefPubMedGoogle Scholar
  27. Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234CrossRefPubMedGoogle Scholar
  28. Ofir R, Wong AC, McDermid HE, Skorecki KL, Selig S (1999) Position effect of human telomeric repeats on replication timing. Proc Natl Acad Sci U S A 96:11434–11439Google Scholar
  29. Partridge TA (2002) Cells that participate in regeneration of skeletal muscle. Gene Ther 9:752–753CrossRefPubMedGoogle Scholar
  30. Perez-Burgos L, Peters AH, Opravil S, Kauer M, Mechtler K, Jenuwein T (2003) Generation and characterization of methyl-lysine histone antibodies. Methods Enzymol (in press)Google Scholar
  31. Simon I, Tenzen T, Mostoslavsky R, Fibach E, Lande L, Milot E, Gribnau J, Grosveld F, Fraser P, Cedar H (2001) Developmental regulation of DNA replication timing at the human beta globin locus. EMBO J 20:6150–6157CrossRefPubMedGoogle Scholar
  32. Smit AF, Toth G, Riggs AD, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246:401–417Google Scholar
  33. Smith ZE, Higgs DR (1999) The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum Mol Genet 8:1373–1386PubMedGoogle Scholar
  34. Suka N, Suka Y, Carmen AA, Wu J, Grunstein M (2001) Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 8:473–479CrossRefPubMedGoogle Scholar
  35. Tsien F, Sun B, Hopkins NE, Vedanarayanan V, Figlewicz D, Winokur S, Ehrlich M (2001) Hypermethylation of the FSHD syndrome-linked subtelomeric repeat in normal and FSHD cells but not in ICF syndrome cells. Mol Gen Metab 74:322–331CrossRefGoogle Scholar
  36. Upadhyaya M, Cooper DN (2002) Molecular diagnosis of facioscapulohumeral muscular dystrophy. Expert Rev Mol Diagn 2:160–171PubMedGoogle Scholar
  37. van Geel M, Heather LJ, Lyle R, Hewitt JE, Frants RR, de Jong PJ (1999) The FSHD region on human chromosome 4q35 contains potential coding regions among pseudogenes and a high density of repeat elements. Genomics 61:55–65PubMedGoogle Scholar
  38. van Geel M, Dickson MC, Beck AF, Bolland DJ, Frants RR, van der Maarel SM, de Jong PJ, Hewitt JE (2002) Genomic analysis of human chromosome 10q and 4q telomeres suggests a common origin. Genomics 79:210–217CrossRefPubMedGoogle Scholar
  39. van Overveld PG, Lemmers RJ, Sandkuijl LA, Enthoven L, Winokur ST, Bakels F, Padberg GW, van Ommen GJ, Frants RR, van der Maarel SM (2003) Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet 35:315–317CrossRefPubMedGoogle Scholar
  40. Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576PubMedGoogle Scholar
  41. Wakimoto BT (1998) Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93:321–324PubMedGoogle Scholar
  42. Winokur ST, Bengtsson U, Feddersen J, Mathews KD, Weiffenbach B, Bailey H, Markovich RP, Murray JC, Wasmuth JJ, Altherr MR, Schutte BC (1994) The DNA rearrangement associated with facioscapulohumeral muscular dystrophy involves a heterochromatin-associated repetitive element: implications for a role of chromatin structure in the pathogenesis of the disease. Chromosome Res 2:225–234PubMedGoogle Scholar
  43. Winokur ST, Bengtsson U, Vargas JC, Wasmuth JJ, Altherr MR, Weiffenbach B, Jacobsen SJ (1996) The evolutionary distribution and structural organization of the homeobox-containing repeat D4Z4 indicates a functional role for the ancestral copy in the FSHD region. Hum Mol Genet 5:1567–1575CrossRefPubMedGoogle Scholar
  44. Winokur ST, Chen, YW, Masny PS, Martin JH, Ehmsen JT, Tapscott SJ, van der Maarel SM, Hayashi Y, Flanigan KM (2003a) Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum Mol Genet 12:2895–2907CrossRefPubMedGoogle Scholar
  45. Winokur ST, Barrett K, Martin JH, Forrester JR, Simon M, Tawil R, Chung SA, Masny PS, Figlewicz DA (2003b) Facioscapulohumeral muscular dystrophy (FSHD) myoblasts demonstrate increased susceptibility to oxidative stress. Neuromuscul Disord 13:322–333CrossRefPubMedGoogle Scholar
  46. Wright WE, Tesmer VM, Liao ML, Shay JW (1999) Normal human telomeres are not late replicating. Exp Cell Res 251:492–499PubMedGoogle Scholar

Copyright information

©  2004

Authors and Affiliations

  • Fan Yang
    • 1
  • Chunbo Shao
    • 1
  • Vettaikorumakankav Vedanarayanan
    • 2
  • Melanie Ehrlich
    • 1
    Email author
  1. 1.Human Genetics Program and Department of BiochemistryTulane Medical SchoolNew OrleansUSA
  2. 2.Department of NeurologyUniversity of Mississippi Medical SchoolJacksonUSA

Personalised recommendations