Assessment of absorbed dose of gamma rays using the simultaneous determination of inactive hemoglobin derivatives as a biological dosimeter

  • A. M. M. Attia
  • W. M. Aboulthana
  • G. M. HassanEmail author
  • E. Aboelezz
Original Article


Biological dosimetry based on sulfhemoglobin (SHb), methemoglobin (MetHb), and carboxyhemoglobin (HbCO) levels was evaluated. SHb, MetHb and HbCO levels were estimated in erythrocytes of mice irradiated by γ rays from a 60Co source using the method of multi-component spectrophotometric analysis developed recently. In this method, absorption measurements of diluted aqueous Hb-solution were made at λ = 500, 569, 577 and 620 nm, and using the mathematical formulas based on multi-component spectrophotometric analysis and the mathematical Gaussian elimination method for matrix calculation, the concentrations of various Hb-derivatives and total Hb in mice blood were estimated. The dose range of γ rays was from 0.5 to 8 Gy and the dose rate was 0.5 Gy min−1. Among all Hb-derivatives, MetHb, SHb and HbCO demonstrated an unambiguous dose-dependent response. For SHb and MetHb, the detection limits were about 0.5 Gy and 1 Gy, respectively. After irradiation, high levels of MetHb, SHb and HbCO persisted for at least 10 days, and the maximal increase of MetHb, SHb and HbCO occurred up to 24 h following γ irradiation. The use of this “MetHb + SHb + HbCO”-derivatives-based absorbed dose relationship showed a high accuracy. It is concluded that simultaneous determination of MetHb, SHb and HbCO, by multi-component spectrophotometry provides a quick, simple, sensitive, accurate, stable and inexpensive biological indicator for the early assessment of the absorbed dose in mice.


Biological dosimetry γ-Irradiation Carboxyhemoglobin (HbCO) Methemoglobin (MetHb) Oxyhemoglobin (HbO2Sulfhemoglobin (SHb) 


Compliance with ethical standards

Conflict of interest

The authors, who are responsible for content and writing of the manuscript, have no declared conflicts of interest.


  1. Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, Nimja M, Oskamp D, Strunz S, Moertl S (2016) Examining radiation-induced in vivo and in vitro gene expression changes of the peripheral blood in different laboratories for biodosimetry purposes: first RENEB gene expression study. Radiat Res 185:109–123ADSCrossRefGoogle Scholar
  2. Adams V, Marley J, McCarroll C (2007) Prilocaine induced methaemoglobinaemia in a medically compromised patient. Was this an inevitable consequence of the dose administered? Br Dent J 203:585–587CrossRefGoogle Scholar
  3. Ash-Bernal R, Wise R, Wright SM (2004) Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine (Baltimore) 83:265–273CrossRefGoogle Scholar
  4. Bakkiam D, Bhavani M, Anantha Kumar AA, Sonwani S, Venkatachalam P, Sivasubramanian K, Venkatraman B (2015) Dicentric assay: inter-laboratory comparison in Indian laboratories for routine and triage applications. Appl Radiat Isot 99:77–85CrossRefGoogle Scholar
  5. Bauchinger M (1995) Quantification of low-level radiation exposure by conventional chromosome aberration analysis. Mutat Res 339:177–189CrossRefGoogle Scholar
  6. Beinke C, Barnard S, Boulay-Greene H, De Amicis A, De Sanctis S, Herodin F, Jones A, Kulka U, Lista F, Lloyd D, Martigne P, Moquet J, Oestreicher U, Romm H, Rothkamm K, Valente M, Meineke V, Braselmann H, Abend M (2013) Laboratory intercomparison of the dicentric chromosome analysis assay. Radiat Res 180(2):129–137ADSCrossRefGoogle Scholar
  7. Benderitter M, Vincent-Genod L, Pouget JP, Voisin P (2003) The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 159(4):471–483ADSCrossRefGoogle Scholar
  8. Buha A, Vaseashta A, Bulat Z, Matović V (2013) Carboxyhemoglobin in blood of smokers and non-smokers determined by gas chromatography with thermal conductivity detector. Advanced Sensors for Safety and Security. Springer, Dordrecht, pp 163–171CrossRefGoogle Scholar
  9. Burke P, Jahangir K, Kolber MR (2013) Dapsone-induced methemoglobinemia: case of the blue lady. Can Fam Phys 59(9):958–961Google Scholar
  10. Burlakova EB, Atkarskaia MV, Fatkullina LD, Andreev SG (2014) Radiation-induced changes in structural state of membranes of human blood cells. Radiatsionnaiabiol Radioecol 54(2):162–168Google Scholar
  11. Deperas-Kaminska M, Bajinskis A, Marczyk M, Polanska J, Wersall P, Lidbrink E, Ainsbury EA, Guipaud O, Benderitter M, Haghdoost S (2014) Radiation-induced changes in levels of selected proteins in peripheral blood serum of breast cancer patients as a potential triage biodosimeter for large-scale radiological emergencies, le radiological emergencies. Health Phys 107:555–563CrossRefGoogle Scholar
  12. Depuydt J, Baeyens A, Barnard S, Beinke C, Benedek A, Beukes P, Buraczewska I, Darroudi F, De Sanctis S, Dominguez I, Gil MO, Hadjidekova V, Kis E, Kulka U, Lista F, Lumniczky K, Mkacher R, Moquet J, Obreja D, Oestreicher U, Pajic J, Pastor N, Popova L, Regalbuto E, Ricoul M, Sabatier L, Slabbert J, Sommer S, Testa A, Thierens H, Wojcik A, Vral A (2017) RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleous Assay). Int J Radiat Biol 93(1):36–47CrossRefGoogle Scholar
  13. Finielz P, Gendoo Z, Lataste A, Chuet C, Guiserix J (1992) Methemoglobinemia and intravascular hemolysis in a patient with G6PD deficiency. Nephron 62(2):242CrossRefGoogle Scholar
  14. Flexman AM, Del Vicario G, Schwarz SK (2007) Dark green blood in the operating theatre. Lancet 369:1972CrossRefGoogle Scholar
  15. Gerald CF (1978) Solving sets of equations. Applied numerical analysis, 2nd edn. Addison-Wesley publishing company, London, pp 78–80Google Scholar
  16. Gopalachar AS, Bowie VL, Bharadwaj P (2005) Phenazopyridine-induced sulfhemoglobinemia. Ann Pharmacother 39:1128–1130CrossRefGoogle Scholar
  17. Grace MB, Mcleland CB, Blakely WF (2002) Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker of radiation biodosimetry. Int J Radiat Biol 78:1011–1021CrossRefGoogle Scholar
  18. Gregory BV, Xinhua J, Clara F, Gary LG (1998) Human carboxyhemoglobin at 2.2 Å resolution: structure and solvent comparisons of R-state, R2-state and T-state hemoglobins. Acta Crystallogr 54:355–366Google Scholar
  19. Hall EJ (1994) The physics and chemistry of radiation absorption. In: James DR, Kimberley C, Dina P (eds) Radiobiology for the radiologist, 4th edn. J.B. Lippincott company, Philadelphia, pp 1–13Google Scholar
  20. Hampson NB (2007) Carboxyhemoglobin elevation due to hemolytic anemia. J Emergency Medicine 33:17–19CrossRefGoogle Scholar
  21. IAEA (1997) The use of plane parallel chambers in high-energy electron and photon beams: an international code of practice. Technical Report Series No. 381, International Atomic Energy Agency, ViennaGoogle Scholar
  22. IAEA (2011) Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. International Atomic Energy Agency, Vienna, pp 1–229Google Scholar
  23. Ivashkevich A, Ohnesorg T, Sparbier CE, Elsaleh H (2017) Advances in biological dosimetry. J Phys Conf Ser 777:012012CrossRefGoogle Scholar
  24. Jaffe ER, Neumann G (1964) A comparison of the effect of menadione, methylene blue and ascorbic acid on the reduction of methemoglobin in vivo. Nature 202:607–608ADSCrossRefGoogle Scholar
  25. Lacombe J, Sima C, Amundson SA, Zenhausern F (2018) Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: a systematic review. PLoS One 13(6):e0198851CrossRefGoogle Scholar
  26. Li S, Lu X, Feng JB, Tian M, Wang J, Chen H, Chen DQ, Liu QJ (2019) Developing gender-specific gene expression biodosimetry using a panel of radiation-responsive genes for determining radiation dose in human peripheral blood. Radiat Res 192(4):399–409ADSCrossRefGoogle Scholar
  27. Lindholm C, Stricklin D, Jaworska A, Koivistoinen A, Paile W, Arvidsson E, Deperas-Standylo J, Wojcik A (2010) Premature chromosome condensation (PCC) assay for dose assessment in mass casualty accidents. Radiat Res 173:71–78ADSCrossRefGoogle Scholar
  28. Londhey V, Khadilkar K, Gad J, Chawla B, Asgaonkar D (2014) Congenital methemoglobinemia: a rare cause of cyanosis in an adult patient. J Assoc Phys India 62(3):269–271Google Scholar
  29. Lopez-Herce J, Borrego R, Bustinza A, Carrrillo A (2005) Elevated carboxyhemoglobin associated with sodium nitroprusside treatment. Intensive Care Med 31:1235–1238CrossRefGoogle Scholar
  30. Manning G, Kabacik S, Finnon P, Bouffler S, Badie C (2013) High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 89:512–522CrossRefGoogle Scholar
  31. Manning G, Macaeva E, Majewski M, Kriehuber R, Brzóska K, Abend M, Doucha-Senf S, Oskamp D, Strunz S, Quintens R, Port M, Badie C (2017) Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int J Radiat Biol. 93(1):87–98CrossRefGoogle Scholar
  32. Miller AC, Luo L, Chin WK, Director-Myska AE, Prasanna PGS, Blakely WF (2002) Protooncogene expression: a predictive assay for radiation biodosimetry applications. Radiat Prot Dosim 99:295–302CrossRefGoogle Scholar
  33. Miller SM, Ferrarotto CL, Vlahovich S, Wilkins RC, Boreham DR, Dolling JA (2007) Canadian cytogenetic emergency network (CEN) for biological dosimetry following radiological/nuclear accidents. Int J Radiat Biol 83(7):471–477CrossRefGoogle Scholar
  34. Ossetrova NI, Sandgren DJ, Gallego S, Blakely WF (2010) Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. Health Phys 98:204–208CrossRefGoogle Scholar
  35. Pinto MM, Santos NF, Amaral A (2010) Current status of biodosimetry based on standard cytogenetic methods. Radiat Environ Biophys 49:567–581CrossRefGoogle Scholar
  36. Prasanna PGS, Muderhwa JM, Miller AC, Grace MB, Salter CA, Blakely WF (2004) Diagnostic biodosimetry response for radiation disasters: Current research and service activities at AFRRI. In: RTO-MP-HFM-108. RTOHFM, Proceedings of NATO medical surveillance and response, Research and Technology Opportunities and Options; Budapest, Hungary. Neuilly-sur-Seine Cedex: Research and Technology Organization (NATO)Google Scholar
  37. Puchala M, Szweda-Lewandowska Z, Kiefer J (2004) The influence of radiation quality on radiation-induced hemolysis and hemoglobin oxidation of human erythrocytes. J Radiat Res 45(2):275–279CrossRefGoogle Scholar
  38. Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM (2010) The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates. PLoS One 5:e15544ADSCrossRefGoogle Scholar
  39. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–292CrossRefGoogle Scholar
  40. Repin M, Pampou S, Karan C, Brenner DJ, Garty G (2017) RABiT-II: implementation of a high-throughput micronucleus biodosimetry assay on commercial biotech robotic systems. Radiat Res 187(4):502–508ADSCrossRefGoogle Scholar
  41. Roth D, Hubmann N, Havel C, Herkner H, Schreiber W, Laggner A (2009) Victim of carbon monoxide poisoning identified by carbon monoxide oximetry. J Emerg Med 40:640–642CrossRefGoogle Scholar
  42. Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, Bernard N, Boulay-Greene H, Brengues M, De Amicis A, De Sanctis S, Greither R, Herodin F, Jones A, Kabacik S, Knie T, Kulka U, Lista F, Martigne P, Missel A, Moquet J, Oestreicher U, Peinnequin A, Poyot T, Roessler U, Scherthan H, Terbrueggen B, Thierens H, Valente M, Vral A, Zenhausern F, Meineke V, Braselmann H, Abend M (2013) Comparison of established and emerging biodosimetry assays. Radiat Res 180(2):111–119ADSCrossRefGoogle Scholar
  43. Sanpakit K, Veerakul G, Pongtanakul B, Viprakrasit V, Pung-ammritt P, Tanphaichitr V (2004) Hereditary methemoglobinemia due to cytochrome b5 reductase deficiency. Thai J Hematol Transf Med 14:281–287Google Scholar
  44. Selim NS (2010) Comparative study on the effect of radiation on whole blood and isolated red blood cells. Rom J Biophys 20(2):127–136Google Scholar
  45. Selim NS, Desouky OS, Ali SM, Ibrahim IH, Ashry HA (2009) Effect of gamma radiation on some biophysical properties of red blood cell membrane. Rom J Biophys 19(3):171–185Google Scholar
  46. Sonbol MB, Yadav H, Vaidya R, Rana V, Witzig TE (2013) Methemoglobinemia and hemolysis in a patient with G6PD deficiency treated with rasburicase. Am J Hematol 88(2):152–154CrossRefGoogle Scholar
  47. Straley SJ (1994) Straley’s object oriented clipper programming, 1st edn. Random house electronic publishing, New York, pp 118–172Google Scholar
  48. Sullivan JM, Prasanna PG, Grace MB, Wathen LK, Wallace RL, Koerner JF, Coleman CN (2013) Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. Health Phys 105:540–554CrossRefGoogle Scholar
  49. Terzoudi GI, Pantelias G, Darroudi F, Barszczewska K, Buraczewska I, Depuydt J, Georgieva D, Hadjidekova V, Hatzi VI, Karachristou I, Karakosta M, Meschini R, M’Kacher R, Montoro A, Palitti F, Pantelias A, Pepe G, Ricoul M, Sabatier L, Sebastià N, Sommer S, Vral A, Zafiropoulos D, Wojcik A (2017) Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay). Int J Radiat Biol 93(1):48–57CrossRefGoogle Scholar
  50. Thierens H, Vral A (2009) The micronucleus assay in radiation accidents. Ann Ist Super Sanita 45(3):260–264Google Scholar
  51. Van Kampen EJ, Zijlstra WG (1983) Spectrophotometry of hemoglobin and hemoglobin derivatives. Adv Clin Chem 23:200–257Google Scholar
  52. Vaurijoux A, Gruel G, Roch-Lefevre S, Voisin P (2012) Current topics in ionizing radiation research. In: Nenol M (ed) Biological dosimetry of ionizing radiation research. In Tech, Rijeka, pp 1–840Google Scholar
  53. Vral A, Frenech M, Thierens H (2011) The micronucleus assay as a biological dosimeter of in vivo ionizing radiation exposure. Mutagen 26:11–17CrossRefGoogle Scholar
  54. Wall LJ, Wong LJ, Kinderknecht LK, Farrior CL, Gabbay DS (2016) Two cases of methemoglobinemia: in a military community hospital. Can Fam Phys 62(2):140–144Google Scholar
  55. WHO (2003) Laboratory biosafety manual, 2nd edn (revised). World Health Organization, Geneva, pp 22–24Google Scholar
  56. Wu C, Kenny MA (1997) A case of sulfhemoglobinemia and emergency measurement of sulfhemoglobin with an OSM3 CO-oximeter. Clin Chem 43(1):162–166Google Scholar
  57. Zahran F, Yousef AA, Baig MH (1982) A study of carboxyhaemoglobin levels of cigarette and sheesha smokers in Saudi Arabia. Am J Pub Health 72(7):722–724CrossRefGoogle Scholar
  58. Zhang XH, Lou ZC, Wang AL, Hu XD, Zhang HQ (2013) New development of serum iron for biological dosimetry in mice. Radiat Res 179:684–689ADSCrossRefGoogle Scholar
  59. Zhang XH, Zhang YN, Min XY, Lou ZC, Wang AL, Hu XD, Zhang HQ (2015) Development of methemoglobin-based biological dosimetry in gamma-irradiated mice. Int J Radiat Res 13:235–241Google Scholar
  60. Zima GV, Dreval VI (2000) The effect of ionizing radiation in a wide dosage range on the structural –functional characteristics of the protein and lipid components of erythrocyte plasma membranes. Radiat Biol Radioecol 40(3):261–265Google Scholar
  61. Zosel A, Rychter K, Leikin JB (2007) Dapsone induced methemoglobinemia: case report and literature review. Am J Ther 14:585–587CrossRefGoogle Scholar
  62. Zwart A, Buursma A, Van Kampen EJ, Zijlstra WG (1984) Multicomponent analysis of hemoglobin derivatives with a reversed optics spectrophotometer. Clin Chem 30:373–379Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. M. M. Attia
    • 1
  • W. M. Aboulthana
    • 1
  • G. M. Hassan
    • 2
    Email author
  • E. Aboelezz
    • 2
  1. 1.Genetic Engineering and Biotechnology Division, Biochemistry DepartmentNational Research CentreGizaEgypt
  2. 2.Division of Thermometry and Ionizing Radiation Metrology, Department of Ionizing Radiation MetrologyNational Institute of StandardsGizaEgypt

Personalised recommendations