Radiation and Environmental Biophysics

, Volume 58, Issue 3, pp 433–438 | Cite as

Selenium does not affect radiosensitivity of breast cancer cell lines

  • Daniela SchillingEmail author
  • Birgit Herold
  • Stephanie E. Combs
  • Thomas E. Schmid
Original Article


Supplementation with the antioxidant selenium is frequently performed in breast cancer patients to protect the normal tissue from radiation-induced side effects. However, concerns exist whether selenium also protects tumor cells from radiation-induced cell kill and thereby reduces the efficacy of radiotherapy. In this work, the effect of selenium administration on the radiosensitivity of breast cancer cells was evaluated in vitro. Physiological relevant selenium concentrations (70 and 140 µg/l) did not affect DNA double-strand breaks (γH2AX foci) after 4-Gy X-ray irradiation. Also apoptosis (caspase 3/7) after irradiation with 10 Gy was not influenced by selenium treatment in MDA-MB-231 and MCF7 cells. Most importantly, selenium supplementation did not impair the clonogenic survival of the breast cancer cell lines after irradiation (0, 2, 4, 6, 8 Gy). The data suggest that physiological relevant selenium concentrations administered in combination with radiation therapy do not deteriorate the efficacy of radiotherapy in breast cancer patients. However, randomized clinical trials comparing the effectiveness of radiotherapy and the associated side effects in patients with and without selenium supplementation are recommended.


Selenium Radiation Breast cancer Radiosensitivity Antioxidant Supplementation 



The authors thank Andrea Mair and Marlon Stein for excellent technical assistance.


This research received no external funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Borek C (2004) Antioxidants and radiation therapy. J Nutr 134:3207S–3209SCrossRefGoogle Scholar
  2. Buntzel J et al (2010) Limited effects of selenium substitution in the prevention of radiation-associated toxicities. Results of a randomized study in head and neck cancer patients. Anticancer Res 30:1829–1832Google Scholar
  3. Dorr W (2006) Effects of selenium on radiation responses of tumor cells and tissue. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 182:693–695. CrossRefGoogle Scholar
  4. Eckers JC, Kalen AL, Xiao W, Sarsour EH, Goswami PC (2013) Selenoprotein P inhibits radiation-induced late reactive oxygen species accumulation and normal cell injury. Int J Radiat Oncol Biol Phys 87:619–625. CrossRefGoogle Scholar
  5. Evans SO, Khairuddin PF, Jameson MB (2017) Optimising selenium for modulation of cancer treatments. Anticancer Res 37:6497–6509. Google Scholar
  6. Franca CA, Nogueira CR, Ramalho A, Carvalho AC, Vieira SL, Penna AB (2011) Serum levels of selenium in patients with breast cancer before and after treatment of external beam radiotherapy. Ann Oncol 22:1109–1112. CrossRefGoogle Scholar
  7. Grober U, Holzhauer P, Kisters K, Holick MF, Adamietz IA (2016) Micronutrients in oncological intervention. Nutrients 8:163. CrossRefGoogle Scholar
  8. Husbeck B, Peehl DM, Knox SJ (2005) Redox modulation of human prostate carcinoma cells by selenite increases radiation-induced cell killing. Free Radic Biol Med 38:50–57. CrossRefGoogle Scholar
  9. Mayland C, Allen KR, Degg TJ, Bennet M (2004) Micronutrient concentrations in patients with malignant disease: effect of the inflammatory response. Ann Clin Biochem 41:138–141. CrossRefGoogle Scholar
  10. Micke O, Mucke R, Bruns F, Kisters K, Buntzel J (2007) Some clinical results on selenium in radiation oncology: letter by O. Micke, R. Mucke, F. Bruns, K. Kisters, J. Buntzel on W. Dorr: effects of selenium on radiation responses of tumor cells and tissue—in: Strahlenther Onkol 2006;182:693-5 (No. 12) ( Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 183:344–345. CrossRefGoogle Scholar
  11. Micke O, Schomburg L, Buentzel J, Kisters K, Muecke R (2009) Selenium in oncology: from chemistry to clinics. Molecules 14:3975–3988. CrossRefGoogle Scholar
  12. Muecke R et al (2010) Multicenter, phase 3 trial comparing selenium supplementation with observation in gynecologic radiation oncology. Int J Radiat Oncol Biol Phys 78:828–835. CrossRefGoogle Scholar
  13. Muecke R et al (2014) Multicenter, phase III trial comparing selenium supplementation with observation in gynecologic radiation oncology: follow-up analysis of the survival data 6 years after cessation of randomization. Integr Cancer Ther 13:463–467. CrossRefGoogle Scholar
  14. Muecke R, Micke O, Schomburg L, Buentzel J, Kisters K, Adamietz IA, Akte (2018) Selenium in radiation oncology-15 years of experiences in Germany. Nutrients 10:10. CrossRefGoogle Scholar
  15. Pakdaman A (1998) Symptomatic treatment of brain tumor patients with sodium selenite, oxygen, and other supportive measures. Biol Trace Elem Res 62:1–6. CrossRefGoogle Scholar
  16. Pothier L, Lane WW, Bhargava A, Michielson C, Douglass HO Jr (1987) Plasma selenium levels in patients with advanced upper gastrointestinal cancer. Cancer 60:2251–2260CrossRefGoogle Scholar
  17. Puspitasari IM, Abdulah R, Yamazaki C, Kameo S, Nakano T, Koyama H (2014) Updates on clinical studies of selenium supplementation in radiotherapy. Radiat Oncol 9:125. CrossRefGoogle Scholar
  18. Puspitasari IM, Yamazaki C, Abdulah R, Putri M, Kameo S, Nakano T, Koyama H (2017) Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells. Oncol Lett 13:449–454. CrossRefGoogle Scholar
  19. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542CrossRefGoogle Scholar
  20. Rodemann HP, Hehr T, Bamberg M (1999) Relevance of the radioprotective effect of sodium selenite. Medizinische Klinik 94(Suppl 3):39–41CrossRefGoogle Scholar
  21. Schilling D, Bayer C, Li W, Molls M, Vaupel P, Multhoff G (2012) Radiosensitization of normoxic and hypoxic h1339 lung tumor cells by heat shock protein 90 inhibition is independent of hypoxia inducible factor-1alpha. PLoS One 7:e31110. ADSCrossRefGoogle Scholar
  22. Schilling D, Kuhnel A, Konrad S, Tetzlaff F, Bayer C, Yaglom J, Multhoff G (2015) Sensitizing tumor cells to radiation by targeting the heat shock response. Cancer Lett 360:294–301. CrossRefGoogle Scholar
  23. Schleicher UM, Lopez Cotarelo C, Andreopoulos D, Handt S, Ammon J (1999) Radioprotection of human endothelial cells by sodium selenite. Medizinische Klinik 94(Suppl 3):35–38CrossRefGoogle Scholar
  24. Schueller P, Puettmann S, Micke O, Senner V, Schaefer U, Willich N (2004) Selenium influences the radiation sensitivity of C6 rat glioma cells. Anticancer Res 24:2913–2917Google Scholar
  25. Shin SH, Yoon MJ, Kim M, Kim JI, Lee SJ, Lee YS, Bae S (2007) Enhanced lung cancer cell killing by the combination of selenium and ionizing radiation. Oncol Rep 17:209–216Google Scholar
  26. Tian J, Ning S, Knox SJ (2010) Sodium selenite radiosensitizes hormone-refractory prostate cancer xenograft tumors but not intestinal crypt cells in vivo. Int J Radiat Oncol Biol Phys 78:230–236. CrossRefGoogle Scholar
  27. Zeng YC et al (2012) Serum levels of selenium in patients with brain metastases from non-small cell lung cancer before and after radiotherapy. Cancer Radiother 16:179–182. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyTechnische Universität München, School of Medicine, Klinikum rechts der IsarMunichGermany
  2. 2.Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM)Helmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site MunichMunichGermany

Personalised recommendations