Radiation and Environmental Biophysics

, Volume 57, Issue 4, pp 365–373 | Cite as

Comparison of measured and calculated doses in a Rando phantom with a realistic lung radiotherapy treatment plan including heterogeneities

  • Serine Sarra Bouacid
  • Fayçal KharfiEmail author
  • Fouad Boulakhssaim
Original Article


In this work, dose measurements were performed to evaluate an external radiotherapy treatment plan and, particularly, to validate dose calculations for a lung lesion case. Doses were calculated by the Varian Eclipse treatment planning system using the AAA anisotropic analytical algorithm. The measurements were performed using a Rando anthropomorphic phantom and TLD700 thermoluminescent dosimeters. The comparison between doses calculated and doses measured by means of thermoluminescence (TL) shows compatibility except for a few points, due to the limitations in the heterogeneity correction used for the case studied here. The deviation between the calculated and measured doses is about 6.5% for low (< 0.5 Gy) doses and about 1% for higher doses (> 0.5 Gy).The deviation between AAA-calculated and TL-measured doses was also found to be higher in proximity to heterogeneous tissue interfaces.


Radiotherapy Dose calculation Rando anthropomorphic phantom Thermoluminescent dosimeter Heterogeneity correction 


  1. Bodry JM (2009) La dosimétrie externe des rayonnements ionisants de la référence nationale aux utilisateurs en radiothérapie et en radioprotection. Rapport CEA-R-6214Google Scholar
  2. Bøtter-Jensen L (2000) Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry. Risø National Laboratory, RoskildeGoogle Scholar
  3. Bragg CM, Conway J (2006) Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning. Radiother Oncol 81:315–323CrossRefGoogle Scholar
  4. Carrasco P, Jornet N, Duch MA, Weber L, Ginjaume M, Eudaldo T, Jurado D, Ruiz A, Ribas M (2004) Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys 31(2):899–911Google Scholar
  5. Furetta C (2003) Handbook of thermoluminescence. World Scientific Publishing, LondonCrossRefGoogle Scholar
  6. Kharfi F, Ketfi R (2018) Irradiated black pepper identification based on thermoluminescence of silicate minerals. J Radioanal Nucl Chem 315(1):503–507CrossRefGoogle Scholar
  7. Kry SF, Alvarez P, Molineu A, Amador C, Galvin J, Followil DS (2013) Algorithms used in heterogenous dose calculations show systematic differences as measured with Radiological Physics Center’s anthropomorphic thorax phantom used for RTOG credentialing. Int J Radiat Oncol Biol Phys 85:95–100CrossRefGoogle Scholar
  8. Landberg T, Chavaudra J, Dobbs J, Hanks G, Johansson KA (1993) Report 50: prescribing, recording and reporting photon beam therapy. J Int Comm Radiat Units Meas (ICRU) 26(1):72Google Scholar
  9. Landberg T, Chavaudra J, Dobbs J, Gerard JP, Hanks G, Horiot JG, Johansson KA, Möller T, Purdy J, Suntharalingam N, Svensson H (1999) Report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). J Int Comm Radiat Units Meas (ICRU) 32(1):52Google Scholar
  10. Lefkopoulos D, Foulquier JN, Petegnief Y, Touboul E (2001) Aspects physique et méthodologiques de l’imagerie multimodalité et principe de la planification dosimétrique pour la radiothérapie conformationnelle tridimensionnelle. Cancer Radiother 5(5):496–514CrossRefGoogle Scholar
  11. McCurdy Boyd MC, McCowan PM (2017) In vivo dosimetry for lung radiotherapy including SBRT. Phys Med 44:123–130CrossRefGoogle Scholar
  12. Noël G, Antoni D, Barillot I, Chauvet B (2016) Delineation of organs at risk and dose constraints. Cancer Radiother 20:36–60CrossRefGoogle Scholar
  13. Oberhofer M, Scharmann A (eds) (1979) Applied thermoluminescence dosimetry. Adam Hilger, BristolGoogle Scholar
  14. Ottosson W, Fehrens CF, Andersen CE (2015) Dose verification of radiotherapy for lung cancer by using plastic scintillator dosimetry and a heterogeneous phantom. J Phys Conf Ser 573:012022CrossRefGoogle Scholar
  15. Papanikolaou N, Battista JF, Boyer AL, Kappas C, Klein E, Mackie TE, Sharpe M, Van Dyk J (2004) AAPM report no. 85: tissue inhomogeneity corrections for megavoltage photon beams—report of task group no. 65 of the radiation therapy Committee of the American Association of Physicists in Medicine. Medical Physics Publishing, MadisonGoogle Scholar
  16. Rana SB (2013) Dose prediction accuracy of anisotropic analytical algorithm and pencil beam convolution algorithm beyond high density heterogeneity interface. South Asian J Cancer 2(1):26–30CrossRefGoogle Scholar
  17. Risø (2015) Guide to the Risø TL/OSL reader. DTU Nutech, RoskildeGoogle Scholar
  18. Ronde HS, Hoffmann L (2009) Validation of varian’s AAA algorithm with focus on lung treatments. Acta Oncol 48:209–215CrossRefGoogle Scholar
  19. Van Dam J, Marinello G (2006) Methods for in vivo dosimetry in external radiotherapy. ESTRO Booklet No.1, 2nd edn. European Society for Radiation Oncology, ESTRO, BrusselsGoogle Scholar
  20. Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamäki S, Alakuijala J, Paiusco M, Lori M, Huyskens DP (2006) Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys 33(11):4130–4148CrossRefGoogle Scholar
  21. Varian (2009) Varian medical system: manuel de référence des algorithms Eclipse v.P/N B502612R03AGoogle Scholar
  22. Varian (2010) Eclipse algorithm reference guide. P/N B502679R03BGoogle Scholar
  23. Wesolowska PE, Cole A, Santos T, Bokulic T, Kazantsev P, Izewska J (2017) Characterization of three solid state dosimetry systems for use in high energy photon dosimetry audits in radiotherapy. Radiat Meas 106:556–562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Ferhat Abbas-Setif1SétifAlgeria
  2. 2.Laboratory of Dosing, Analysis and Characterization with High Resolution (DAC)SétifAlgeria
  3. 3.Fighting Against Cancer Medical Centre (CLCC)SétifAlgeria

Personalised recommendations