Advertisement

Radiation and Environmental Biophysics

, Volume 56, Issue 4, pp 377–387 | Cite as

Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new “B2” configuration of the RA-6 nuclear reactor

  • Andrea Monti HughesEmail author
  • Juan Longhino
  • Esteban Boggio
  • Vanina A. Medina
  • Diego J. Martinel Lamas
  • Marcela A. Garabalino
  • Elisa M. Heber
  • Emiliano C. C. Pozzi
  • María E. Itoiz
  • Romina F. Aromando
  • David W. Nigg
  • Verónica A. Trivillin
  • Amanda E. Schwint
Original Article

Abstract

Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new “B2” configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in “B1” experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94–96%) than in control (16%) and BO groups (9–38%), and did not differ significantly from the “B1” results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.

Keywords

Boron neutron capture therapy (BNCT) RA-6 configuration Hamster cheek pouch oral cancer model Histamine Mucositis Precancerous tissue 

Notes

Acknowledgements

This work was partially supported by the U.S. Department of Energy through Idaho National Laboratory and grants from the National Agency for the Promotion of Science and Technology of Argentina and the National Institute of Cancer, Argentina. The authors acknowledge the expert advice of Dr. Sara J. González (CNEA, CONICET).

Compliance with ethical standards

Funding

Partially supported by the U.S. Department of Energy through Idaho National Laboratory (no. 00011369) and grants from the National Agency for the Promotion of Science and Technology of Argentina (no. 2010-0175) and the National Institute of Cancer (no. 1006/2016), Argentina.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the National Atomic Energy Commission (CNEA).

References

  1. Agarwala SS, Sabbagh MH (2001) Histamine dihydrochloride: inhibiting oxidants and synergising IL-2-mediated immune activation in the tumour microenvironment. Expert Opin Biol Ther 1:869–879CrossRefGoogle Scholar
  2. Andoh T, Fujimoto T, Suzuki M, Sudo T, Sakurai Y, Tanaka H, Fujita I, Fukase N, Moritake H, Sugimoto T, Sakuma T, Sasai H, Kawamoto T, Kirihata M, Fukumori Y, Akisue T, Ono K, Ichikawa H (2015) Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: trial using a lung metastasis model of CCS. Appl Radiat Isot 106:195–201CrossRefGoogle Scholar
  3. Anuja K, Roy S, Ghosh C, Gupta P, Bhattacharjee S, Banerjee B (2017) Prolonged inflammatory microenvironment is crucial for pro-neoplastic growth and genome instability: a detailed review. Inflamm Res 66(2):119–128CrossRefGoogle Scholar
  4. Aromando RF, Heber EM, Trivillin VA, Nigg DW, Schwint AE, Itoiz ME (2009) Insight into the mechanisms underlying tumor response to boron neutron capture therapy in the hamster cheek pouch oral cancer model. J Oral Pathol Med 38(5):448–454CrossRefGoogle Scholar
  5. Azuma Y, Shinohara M, Wang PL, Hidaka A, Ohura K (2001) Histamine inhibits chemotaxis, phagocytosis, superoxide anion production, and the production of TNFalpha and IL-12 by macrophages via H2-receptors. Int Immunopharmacol 1:1867–1875CrossRefGoogle Scholar
  6. Blaumann H, Longhino J, Calzetta O (2008) Redesign of the RA-6 reactor BNCT facility. Dissertation, 13th ICNCT Congress, Florence, ItalyGoogle Scholar
  7. Bowen JM, Gibson RJ, Keefe DM (2011) Animal models of mucositis: implications for therapy. J Support Oncol 9(5):161–168CrossRefGoogle Scholar
  8. Chen YK, Lin LM (2010) DMBA-induced hamster buccal pouch carcinoma and VX2-induced rabbit cancer as a model for human oral carcinogenesis. Expert Rev Anticancer Ther 10(9):1485–1496CrossRefGoogle Scholar
  9. Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18ADSCrossRefGoogle Scholar
  10. Elad S, Ackerstein A, Bitan M, Shapira MY, Resnick I, Gesundheit B, Cohen Y, Diss O, Barak D, Dray L, Or R (2006) A prospective, double-blind phase II study evaluating the safety and efficacy of a topical histamine gel for the prophylaxis of oral mucositis in patients post hematopoietic stem cell transplantation. Bone Marrow Transplant 37:757–762CrossRefGoogle Scholar
  11. Faião-Flores F, Coelho PR, Arruda-Neto JD, Maria-Engler SS, Maria DA (2013) Cell cycle arrest, extracellular matrix changes and intrinsic apoptosis in human melanoma cells are induced by boron neutron capture therapy. Toxicol In Vitro 27:1196–1204CrossRefGoogle Scholar
  12. Faustino-Rocha AI, Ferreira R, Gama A, Oliveira PA, Ginja M (2017) Antihistamines as promising drugs in cancer therapy. Life Sci 172:27–41CrossRefGoogle Scholar
  13. Heber EM, Monti Hughes A, Pozzi EC, Itoiz ME, Aromando RF, Molinari AJ, Garabalino MA, Nigg DW, Trivillin VA, Schwint AE (2010) Development of a model of tissue with potentially malignant disorders (PMD) in the hamster cheek pouch to explore the long-term potential therapeutic and/or toxic effects of different therapeutic modalities. Arch Oral Biol 55(1):46–51CrossRefGoogle Scholar
  14. Hellstrand K, Hermodsson S, Naredi P, Mellqvist UH, Brune M (1998) Histamine and cytokine therapy. Acta Oncol 37:347–353CrossRefGoogle Scholar
  15. Hopewell JW, Morris GM, Schwint A, Coderre JA (2011) The radiobiological principles of boron neutron capture therapy: a critical review. Appl Radiat Isot 69(12):1756–1759CrossRefGoogle Scholar
  16. Jensen SB, Peterson DE (2014) Oral mucosal injury caused by cancer therapies: current management and new frontiers in research. J Oral Pathol Med 43(2):81–90CrossRefGoogle Scholar
  17. Kankaanranta L, Seppälä T, Koivunoro H, Saarilahti K, Atula T, Collan J, Salli E, Kortesniemi M, Uusi-Simola J, Välimäki P, Mäkitie A, Seppänen M, Minn H, Revitzer H, Kouri M, Kotiluoto P, Seren T, Auterinen I, Savolainen S, Joensuu H (2012) Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int J Radiat Oncol Biol Phys 82(1):e67–e75CrossRefGoogle Scholar
  18. Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y et al (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61:1069–1073CrossRefGoogle Scholar
  19. Kinashi Y, Okumura K, Kubota Y, Kitajima E, Okayasu R, Ono K, Takahashi S (2014) Dose-rate effect was observed in T98G glioma cells following BNCT. Appl Radiat Isot 88:81–85CrossRefGoogle Scholar
  20. Koohi-Hosseinabadi O, Andisheh-Tadbir A, Bahadori P, Sepehrimanesh M, Mardani M, Tanideh N (2015) Comparison of the therapeutic effects of the dietary and topical forms of Zizyphus jujuba extract on oral mucositis induced by 5-fluorouracil: a golden hamster model. J Clin Exp Dent 7(2):e304–e309CrossRefGoogle Scholar
  21. Kreimann EL, Itoiz ME, Dagrosa A, Garavaglia R, Farías S, Batistoni D, Schwint AE (2001a) The hamster cheek pouch as a model of oral cancer for boron neutron capture therapy studies: selective delivery of boron by boronophenylalanine. Cancer Res 61(24):8775–8781Google Scholar
  22. Kreimann EL, Itoiz ME, Longhino J, Blaumann H, Calzetta O, Schwint AE (2001b) Boron neutron capture therapy for the treatment of oral cancer in the hamster cheek pouch model. Cancer Res 61(24):8638–8642Google Scholar
  23. Letchoumy PV, Chandra Mohan KV, Kumaraguruparan R, Hara Y, Nagini S (2006) Black tea polyphenols protect against 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Oncol Res 16:167–178CrossRefGoogle Scholar
  24. Longhino J, Blaumann H (2010) Current Status of the RA-6 reactor BNCT facility. Dissertation, 14th ICNCT Congress, Bs As, ArgentinaGoogle Scholar
  25. Longhino J, Fernandez C, Santa Cruz G (2012) BNCT hyperthermal beam B2 at RA-6 reactor: Configuration and performance of the new therapeutic facility. Dissertation, 15th ICNCT Congress, Tsukuba, JapanGoogle Scholar
  26. López Castaño F, Oñate-Sánchez RE, Roldán-Chicano R, Cabrerizo-Merino MC (2005) Measurement of secondary mucositis to oncohematologic treatment by means of different scale. Med Oral Patol Oral Cir Bucal 10:412–421Google Scholar
  27. Machiels JP, Lambrecht M, Hanin FX, Duprez T, Gregoire V, Schmitz S, Hamoir M (2014) Advances in the management of squamous cell carcinoma of the head and neck. F1000Prime Rep 6:44CrossRefGoogle Scholar
  28. Martinel Lamas DJ, Carabajal E, Prestifilippo JP, Rossi L, Elverdin JC, Merani S, Bergoc RM, Rivera ES, Medina VA (2013) Protection of radiation-induced damage to the hematopoietic system, small intestine and salivary glands in rats by JNJ7777120 compound, a histamine H4 ligand. PLoS One 8:e69106ADSCrossRefGoogle Scholar
  29. Mazeron JJ, Scalliet P, Van Limbergen E, Lartigau E (2002) Radiobiology of brachytherapy and the dose-rate effect. The GEC-ESTRO handbook of brachytherapy, Brussels: ESTRO. pp 95–121Google Scholar
  30. Medina VA, Rivera ES (2010) Histamine receptors and cancer pharmacology. Br J Pharmacol 161:755–767CrossRefGoogle Scholar
  31. Medina VA, Croci M, Mohamad NA, Massari N, Garbarino G, Cricco GP, Núñez MA, Martín GA, Crescenti EJ, Bergoc RM, Rivera ES (2007) Mechanisms underlying the radioprotective effect of histamine on small intestine. Int J Radiat Biol 83(10):653–663CrossRefGoogle Scholar
  32. Medina VA, Martinel Lamas DJ, Brenzoni PG, Massari N, Carabajal E and Rivera ES (2011a) Histamine receptors as potential therapeutic targets for cancer drug development, drug development—a case study based insight into modern strategies. In: Dr. Chris Rundfeldt (ed). doi:  10.5772/27773. http://www.intechopen.com/books/drug-development-a-case-study-based-insight-into-modern-strategies/histamine-receptors-as-potential-therapeutic-targets-for-cancer-drug-development
  33. Medina VA, Prestifilippo JP, Croci M, Carabajal E, Bergoc RM, Elverdin JC, Rivera ES (2011b) Histamine prevents functional and morphological alterations of submandibular glands induced by ionising radiation. Int J Radiat Biol 87(3):284–292CrossRefGoogle Scholar
  34. Molinari AJ, Pozzi ECC, Monti Hughes A, Heber EM, Garabalino MA, Thorp SI, Miller M, Itoiz ME, Aromando RF, Nigg DW, Quintana J, Santa Cruz GA, Trivillin VA, Schwint AE (2011) ‘‘Sequential’’ boron neutron capture therapy (BNCT): a novel approach to BNCT for the treatment of oral cancer in the hamster cheek pouch model. Radiat Res 175:463–472ADSCrossRefGoogle Scholar
  35. Molinari AJ, Pozzi EC, Monti Hughes A, Heber EM, Garabalino MA, Thorp SI, Miller M, Itoiz ME, Aromando RF, Nigg DW, Trivillin VA, Schwint AE (2012) Tumor blood vessel “normalization” improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer. Radiat Res 177(1):59–68ADSCrossRefGoogle Scholar
  36. Monti Hughes A, Pozzi EC, Thorp S, Garabalino MA, Farías RO, González SJ, Heber EM, Itoiz ME, Aromando RF, Molinari AJ, Miller M, Nigg DW, Curotto P, Trivillin VA, Schwint AE (2013) Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model. Oral Dis 19(8):789–795CrossRefGoogle Scholar
  37. Monti Hughes A, Aromando R, Pérez MA, Schwint AE, Itoiz ME (2015a) The hamster cheek pouch model for field cancerization studies. Periodontology 2000 67(1):292–311CrossRefGoogle Scholar
  38. Monti Hughes A, Pozzi E, Thorp SI, Curotto P, Medina VA, Martinel Lamas DJ, Rivera ES, Garabalino MA, Farías RO, Gonzalez SJ, Heber EM, Itoiz ME, Aromando RF, Nigg DW, Trivillin VA, Schwint AE (2015b) Histamine reduces boron neutron capture therapy-induced mucositis in an oral precancer model. Oral Dis 21(6):770–777CrossRefGoogle Scholar
  39. Monti Hughes A, Pozzi ECC, Thorp S, Curotto P, Medina VA, Martinel Lamas DJ, Rivera ES, Garabalino MA, Farías RO, González SJ, Heber EM, Itoiz ME, Aromando RF, Nigg DW, Trivillin VA, Schwint AE (2016) Histamine reduces the incidence of severe mucositis induced by boron neutron capture therapy (BNCT) in field cancerized tissue in the hamster cheek pouch oral precancer model without compromising therapeutic efficacy. Poster, 45th EHRS (European Histamine Research Society) meeting, Florence, ItalyGoogle Scholar
  40. Perez MA, Raimondi AR, Itoiz ME (2005) An experimental model to demonstrate the carcinogenic action of oral chronic traumatic ulcer. J Oral Pathol Med 34:17–22CrossRefGoogle Scholar
  41. Pozzi EC, Cardoso JE, Colombo LL, Thorp S, Monti Hughes A, Molinari AJ, Garabalino MA, Heber EM, Miller M, Itoiz ME, Aromando RF, Nigg DW, Quintana J, Trivillin VA, Schwint AE (2012) Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. Radiat Environ Biophys 51:331–339CrossRefGoogle Scholar
  42. Romero AI, Thoren FB, Aurelius J, Askarieh G, Brune M, Hellstrand K (2009) Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 in AML. Scand J Immunol 70:194–205CrossRefGoogle Scholar
  43. Sabharwal R, Mahendra A, Moon NJ, Gupta P, Jain A, Gupta S (2014) Genetically altered fields in head and neck cancer and second field tumor. South Asian J Cancer 3(3):151–153CrossRefGoogle Scholar
  44. Santa Cruz GA, Longhino JM, Provenzano L, Boggio EF, Roth BMC, Pereira MD, Monti Hughes A, Farías RO, Olivera MS, Garabalino M, Nievas SI, Menéndez PR, Cantarelli MA, Rao M, Casal MR, Feld D, Trivillin VA, Pozzi E, Heber E, Brollo F, Herrera M, Kessler J, Bortolussi S, Schwint AE, González SJ (2016) Re-start of clinical and pre-clinical BNCT activities at the Argentine RA-6 Nuclear Reactor. Dissertation, 16th ICNCT Congress, Missouri, USAGoogle Scholar
  45. Sonis ST (2009) Mucositis: the impact, biology and therapeutic opportunities of oral mucositis. Oral Oncol 45:1015–1020CrossRefGoogle Scholar
  46. Sonis ST, Peterson RL, Edwards LJ, Lucey CA, Wang L, Mason L, Login G, Ymamkawa M, Moses G, Bouchard P, Hayes LL, Bedrosian C, Dorner AJ (2000) Defining mechanisms of action of interleukin-11 on the progression of radiation-induced oral mucositis in hamsters. Oral Oncol 36(4):373–381CrossRefGoogle Scholar
  47. Supsavhad W, Dirksen WP, Martin CK, Rosol TJ (2016) Animal models of head and neck squamous cell carcinoma. Vet J 210:7–16CrossRefGoogle Scholar
  48. Treede RD, Meyer RA, Davis KD, Campbell JN (1990) Intradermal injections of bradykinin or histamine cause a flare-like vasodilatation in monkey. Evidence from laser Doppler studies. Neurosci Lett 115:201–206CrossRefGoogle Scholar
  49. Trivillin VA, Heber EM, Nigg DW, Itoiz ME, Calzetta O, Blaumann H, Longhino J, Schwint AE (2006) Therapeutic success of boron neutron capture therapy (BNCT) mediated by a chemically non-selective boron agent in an experimental model of oral cancer: a new paradigm in BNCT radiobiology. Radiat Res 166(2):387–396ADSCrossRefGoogle Scholar
  50. Vairaktaris E, Spyridonidou S, Papakosta V, Vylliotis A, Lazaris A, Perrea D, Yapijakis C, Patsouris E (2008) The hamster model of sequential oral oncogenesis. Oral Oncol 44(4):315–324CrossRefGoogle Scholar
  51. Wang LW, Chen YW, Ho CY, Hsueh Liu YW, Chou FI, Liu YH, Liu HM, Peir JJ, Jiang SH, Chang CW, Liu CS, Wang SJ, Chu PY, Yen SH (2014) Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase I/II clinical trial at Tsing Hua open-pool reactor. Appl Radiat Isot 88:23–27CrossRefGoogle Scholar
  52. Wu X, Chen P, Sonis ST, Lingen MW, Berger A, Toback FG (2012) A novel Peptide to treat oral mucositis blocks endothelial and epithelial cell apoptosis. Int J Radiat Oncol Biol Phys 83(3):e409–e415CrossRefGoogle Scholar
  53. Yang LPH, Perry CM (2011) Spotlight on histamine dihydrochloride in acute myeloid leukaemia. Drugs Aging 28(4):325–329CrossRefGoogle Scholar
  54. Zonta A, Prati U, Roveda L, Ferrari C, Zonta S, Clerici AM, Zonta C, Pinelli T, Fossati F, Altieri S, Bortolussi S, Bruschi P, Nano R, Barni S, Chiari P, Mazzini G (2006) Clinical lessons from the first applications of BNCT on unresectable liver metastases. In: Journal of Physics: Conference Series, vol 41, Institute of Physics Publishing, Bristol, UK, pp 484–495. doi: 10.1088/1742-6596/41/1/054

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Andrea Monti Hughes
    • 1
    • 2
    Email author
  • Juan Longhino
    • 3
  • Esteban Boggio
    • 3
  • Vanina A. Medina
    • 2
    • 4
  • Diego J. Martinel Lamas
    • 2
    • 4
  • Marcela A. Garabalino
    • 1
  • Elisa M. Heber
    • 1
  • Emiliano C. C. Pozzi
    • 1
  • María E. Itoiz
    • 1
    • 5
  • Romina F. Aromando
    • 5
  • David W. Nigg
    • 6
  • Verónica A. Trivillin
    • 1
    • 2
  • Amanda E. Schwint
    • 1
    • 2
  1. 1.Department of RadiobiologyConstituyentes Atomic Center, National Atomic Energy Commission (CNEA)San Martín, Province Buenos AiresArgentina
  2. 2.National Research Council (CONICET)Ciudad Autonoma de Buenos AiresArgentina
  3. 3.Department of Nuclear EngineeringBariloche Atomic Center, CNEASan Carlos de Bariloche, Province Rio NegroArgentina
  4. 4.Laboratory of Tumoral Biology and Inflammation, School of Medical Sciences, Institute for Biomedical Research (BIOMED CONICET-UCA)Pontifical Catholic University of Argentina (UCA)Ciudad Autonoma de Buenos AiresArgentina
  5. 5.Department of Oral Pathology, Faculty of DentistryUBACiudad Autonoma de Buenos AiresArgentina
  6. 6.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations