Advertisement

Radiation and Environmental Biophysics

, Volume 56, Issue 4, pp 365–375 | Cite as

Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer

  • Verónica A. Trivillin
  • Emiliano C. C. Pozzi
  • Lucas L. Colombo
  • Silvia I. Thorp
  • Marcela A. Garabalino
  • Andrea Monti Hughes
  • Sara J. González
  • Rubén O. Farías
  • Paula Curotto
  • Gustavo A. Santa Cruz
  • Daniel G. Carando
  • Amanda E. Schwint
Original Article

Abstract

The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 106 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 106 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm3. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm3. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.

Keywords

Boron neutron capture therapy BNCT Abscopal effect Boronophenylalanine (BPA) Nuclear reactor RA-3 

Notes

Acknowledgements

The authors acknowledge the expert assistance of Nuclear Reactor RA-3 staff.

Funding

This study was funded by Comisión Nacional de Energía Atómica, Argentina.

Compliance with ethical standards

Conflict of interest

Author VA Trivillin declares that she has no conflict of interest. Author ECC Pozzi declares that he has no conflict of interest. Author LL Colombo declares that he has no conflict of interest. Author SI Thorp declares that she has no conflict of interest. Author MA Garabalino declares that she has no conflict of interest. Author A Monti Hughes declares that she has no conflict of interest. Author SJ González declares that she has no conflict of interest. Author RO Farías declares that he has no conflict of interest. Author P Curotto declares that she has no conflict of interest. Author GA Santa Cruz declares that he has no conflict of interest. Author DG Carando declares that he has no conflict of interest. Author AE Schwint declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Human and animal rights

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Aromando RF, Heber EM, Trivillin VA, Nigg DW, Schwint AE, Itoiz ME (2009) Insight into the mechanisms underlying tumor response to boron neutron capture therapy in the hamster cheek pouch oral cancer model. J Oral Pathol Med 38:448–454CrossRefGoogle Scholar
  2. Barth RF (2015) From the laboratory to the clinic: how translational studies in animals have lead to clinical advances in boron neutron capture therapy. Appl Radiat Isot 106:22–28CrossRefGoogle Scholar
  3. Camphausen K, Moses MA, Ménard C, Sproull M, Beecken WD, Folkman J, O´Reilly MS (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993Google Scholar
  4. Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, Guha C (1999) Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res 59(24):6028–6032Google Scholar
  5. Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151(1):1–18ADSCrossRefGoogle Scholar
  6. Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2:153Google Scholar
  7. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870CrossRefGoogle Scholar
  8. Demaria S, Bhardwaj N, McBride WH, Formenti SC (2005) Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3):655–666CrossRefGoogle Scholar
  9. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388CrossRefGoogle Scholar
  10. Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105(4):256–265CrossRefGoogle Scholar
  11. Garabalino MA, Monti Hughes A, Molinari AJ, Heber EM, Pozzi ECC, Cardoso JE, Colombo LL, Nievas S, Nigg DW, Aromando RF, Itoiz ME, Trivillin VA, Schwint AE (2011) Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model. Radiat Environ Biophys 50(1):199–207CrossRefGoogle Scholar
  12. Garabalino MA, Heber EM, Monti Hughes A, González SJ, Molinari AJ, Pozzi ECC, Nievas S, Itoiz ME, Aromando RF, Nigg DW, Bauer W, Trivillin VA, Schwint AE (2013) Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model. Radiat Environ Biophys 52:351–361CrossRefGoogle Scholar
  13. Golden EB, Formenti SC (2014) Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology 3(1):e28133CrossRefGoogle Scholar
  14. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372CrossRefGoogle Scholar
  15. González SJ, Santa Cruz GA (2012) The photon-isoeffective dose in boron neutron capture therapy. Radiat Res 178(6):609–621ADSCrossRefGoogle Scholar
  16. González SJ, Bonomi MR, Santa Cruz GA, Blaumann HR, Calzetta Larrieu OA, Menéndez P, Jiménez Rebagliati R, Longhino J, Feld DB, Dagrosa MA, Argerich C, Castiglia SG, Batistoni DA, Liberman SJ, Roth BM (2004) First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiat Isot 61(5):1101–1105CrossRefGoogle Scholar
  17. González SJ, Casal M, Pereira MD, Santa Cruz GA, Carando DG, Blaumann H, Bonomi M, Calzetta Larrieu O, Feld D, Fernández C, Gossio S, Jiménez Rebagliatti R, Kessler J, Longhino J, Menéndez P, Nievas S, Roth BM, Liberman SJ (2009) Tumor control and normal tissue complications in BNCT treatment of nodular melanoma: a search for predictive quantities. Appl Radiat Isot 67:S153–S156CrossRefGoogle Scholar
  18. Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M, Esposito A, Paone M, Palla M, Palmieri G, Carraco C, Ciliberto G, Mozzillo N, Ascierto PA (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780CrossRefGoogle Scholar
  19. Hartford A, Gohongi T, Fukumura D, Jain R (2000) Irradiation of a primary tumor, unlike surgical removal, enhances angiogenesis suppression at a distal site: potential role of host-tumor interaction. Cancer Res 60:2128–2131Google Scholar
  20. Heber EM, Hawthorne MF, Kueffer PJ, Garabalino MA, Thorp SI, Pozzi ECC, Monti Hughes A, Maitz CA, Jalisatgi SS, Nigg DW, Curotto P, Trivillin VA, Schwint AE (2014) Therapeutic efficacy of boron neutron capture therapy mediated by boron rich liposomes for oral cancer in the hamster cheek pouch model. Proc Natl Acad Sci USA 111(45):16077–16081ADSCrossRefGoogle Scholar
  21. Hodge JW, Sharp HJ, Gameiro SR (2012) Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother Radiopharm 27(1):12–22CrossRefGoogle Scholar
  22. Hopewell JW, Morris GM, Schwint AE, Coderre JA (2011) The radiobiological principles of boron neutron capture therapy: a critical review. Appl Radiat Isot 69:1756–1759CrossRefGoogle Scholar
  23. Kankaanranta L, Seppälä T, Koivunoro H, Saarilahti K, Atula T, Collan J, Salli E, Kortesniemi M, Uusi-Simola J, Välimäki P, Mäkitie A, Seppänen M, Minn H, Revitzer H, Kouri M, Kotiluoto P, Seren T, Auterinen I, Savolainen S, Joensuu H (2012) Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int J Radiat Oncol Biol Phys 82(1):e67–e75CrossRefGoogle Scholar
  24. Khan FM, Gerbi BJ (2012) Treatment planning in radiation oncology, 3rd edn. Lippincot Williams & Wilkins, PhiladelphiaGoogle Scholar
  25. Kreimann EL, Itoiz ME, Dagrosa A, Garavaglia R, Farías S, Batistoni D, Schwint AE (2001a) The hamster cheek pouch as a model of oral cancer for boron neutron capture therapy studies: selective delivery of boron by boronophenylalanine. Cancer Res 61:8775–8781Google Scholar
  26. Kreimann EL, Itoiz ME, Longhino J, Blaumann H, Calzetta O, Schwint AE (2001b) Boron neutron capture therapy for the treatment of oral cancer in the hamster cheek pouch model. Cancer Res (Advances in Brief) 61:8638–8642Google Scholar
  27. Kucerova P, Cervinkova M (2016) Spontaneous regression of tumour and the role of microbial infection – possibilities for cancer treatment. Anticancer Drugs 27:269–277CrossRefGoogle Scholar
  28. Lakshmanagowda PB, Viswanath L, Thimmaiah N, Dasappa L, Supe SS, Kallur P (2009) Abscopal effect in a patient with chronic lymphocytic leukemia during radiation therapy: a case report. Cases J 2:204CrossRefGoogle Scholar
  29. Lock M, Muinuddin A, Kocha WI, Dinniwell R, Rodrigues G, D’souza D (2015) Abscopal effects: case report and emerging opportunities. Cureus 7(10):e344Google Scholar
  30. Ludgate CM (2012) Optimizing cancer treatments to induce an acute immune response: radiation abscopal effects, PAMPs, and DAMPs. Clin Cancer Res 18(17):4522–4525CrossRefGoogle Scholar
  31. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523CrossRefGoogle Scholar
  32. Masucci GV, Wersäll P, Kiessling R, Lundqvist A, Lewensohn R (2012) Stereotactic ablative radio therapy (SABR) followed by immunotherapy a challenge for individualized treatment of metastatic solid tumours. J Transl Med 10:104CrossRefGoogle Scholar
  33. Masunaga S, Ono K, Takahashi A, Sakurai Y, Ohnishi K, Kobayashi T, Kinashi Y, Takagaki M, Ohnishi T (2002) Impact of the p53 status of the tumor cells on the effect of reactor neutron beam irradiation, with emphasis on the response of intratumor quiescent cells. Jpn J Cancer Res 93(12):1366–1377CrossRefGoogle Scholar
  34. Mellman I, Coukos G, Dranoff G (2012) Cancer immunotherapy comes of age. Nature 480:480–489ADSCrossRefGoogle Scholar
  35. Miller ME, Mariani LE, Sztejnberg Gonçalves-Carralves ML, Skumanic M, Thorp SI (2004) Implantable self-powered detector for on-line determination of neutron flux in patients during NCT treatment. Appl Radiat Isot 61:1033–1037CrossRefGoogle Scholar
  36. Miller M, Quintana J, Ojeda J, Langan S, Thorp S, Pozzi E, Sztejnberg M, Estryk G, Nosal R, Saire E, Agrazar H, Graiño F (2009) New irradiation facility for biomedical applications at the RA-3 reactor thermal column. Appl Radiat Isot 67(7–8 Suppl):S226–S229CrossRefGoogle Scholar
  37. Miyatake S, Kawabata S, Hiramatsu R, Furuse M, Kuroiwa T, Suzuki M (2014) Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiat Oncol 9:6CrossRefGoogle Scholar
  38. Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26(305):234–241CrossRefGoogle Scholar
  39. Molinari AJ, Pozzi EC, Monti Hughes A, Heber EM, Garabalino MA, Thorp SI, Miller M, Itoiz ME, Aromando RF, Nigg DW, Quintana J, Santa Cruz GA, Trivillin VA, Schwint AE (2011) “Sequential” boron neutron capture therapy (BNCT): a novel approach to BNCT for the treatment of oral cancer in the hamster cheek pouch model. Radiat Res 175(4):463–472ADSCrossRefGoogle Scholar
  40. Molinari AJ, Pozzi ECC, Monti Hughes A, Heber EM, Garabalino MA, Thorp SI, Miller M, Itoiz ME, Aromando RF, Nigg DW, Trivillin VA, Schwint AE (2012) Tumor blood vessel ‘‘Normalization’’ improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer. Radiat Res 177:59–68ADSCrossRefGoogle Scholar
  41. Monti Hughes A, Pozzi ECC, Thorp S, Garabalino MA, Farías RO, González SJ, Heber EM, Itoiz ME, Aromando RF, Molinari AJ, Miller M, Nigg DW, Curotto P, Trivillin VA, Schwint AE (2013) Boron neutron capture therapy for oral pre-cancer: proof of principle in an experimental animal model. Oral Dis 19:789–795CrossRefGoogle Scholar
  42. Monti Hughes A, Pozzi ECC, Thorp SI, Curotto P, Medina VA, Martinel Lamas DJ, Rivera ES, Garabalino MA, Farías RO, Gonzalez SJ, Heber EM, Itoiz ME, Aromando RF, Nigg DW, Trivillin VA, Schwint AE (2015) Histamine reduces Boron Neutron Capture Therapy (BNCT)-induced mucositis in an oral precancer model. Oral Dis 21(6):770–777CrossRefGoogle Scholar
  43. Mozdarani H (2012) Biological complexities in radiation carcinogenesis and cancer radiotherapy: impact of new biological paradigms. Genes (Basel) 3(1):90–114CrossRefGoogle Scholar
  44. Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, Kinoshita H, Masuda J, Hazama H, Sakamoto I, Kohno S (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43(4):575–577CrossRefGoogle Scholar
  45. Okuma K, Yamashita H, Niibe Y, Hayakawa K, Nakagawa K (2011) Abscopal effect of radiation on lung metastases of hepatocellular carcinoma: a case report. J Med Case Rep 5:111CrossRefGoogle Scholar
  46. Park B, Yee C, Lee KM (2014) The effect of radiation on the immune response to cancers. Int J Mol Sci 15(1):927–943CrossRefGoogle Scholar
  47. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, Sedrak C, Jungbluth AA, Chua R, Yang AS, Roman RA, Rosner S, Benson B, Allison JP, Lesokhin AM, Gnjatic S, Wolchok JD (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931CrossRefGoogle Scholar
  48. Pozzi ECC, Nigg DW, Miller M, Thorp SI, Heber EM, Zarza L, Estryk G, Monti Hughes A, Molinari AJ, Garabalino M, Itoiz ME, Aromando RF, Quintana J, Trivillin VA, Schwint AE (2009) Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer. Appl Radiat Isot 67:309–312CrossRefGoogle Scholar
  49. Pozzi ECC, Cardoso JE, Colombo LL, Thorp SI, Monti Hughes A, Molinari AJ, Garabalino MA, Heber EM, Miller M, Itoiz ME, Aromando RF, Nigg DW, Quintana J, Trivillin VA, Schwint AE (2012) Boron neutron capture therapy for liver metastasis: experimental studies in BDIX rats. Radiat Environ Biophys 51(3):331–339CrossRefGoogle Scholar
  50. Pozzi ECC, Trivillin VA, Colombo LL, Monti Hughes A, Thorp SI, Cardoso JE, Garabalino MA, Molinari AJ, Heber EM, Curotto P, Miller M, Itoiz ME, Aromando RF, Nigg DW, Schwint AE (2013) Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose-response at five-week follow-up based on retrospective dose assessment in individual rats. Radiat Environ Biophys 52:481–491CrossRefGoogle Scholar
  51. Rao M, Trivillin VA, Heber EM, Cantarelli MA, Itoiz ME, Nigg DW, Rebagliati RJ, Batistoni D, Schwint AE (2004) BNCT of 3 cases of spontaneous head and neck cancer in feline patients. Appl Radiat Isot 61(5):947–952CrossRefGoogle Scholar
  52. Rees GJ, Ross CM (1983) Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol 56(661):63–66CrossRefGoogle Scholar
  53. Schwint AE, Trivillin VA (2015) EDITORIAL “Close-to-ideal” tumor boron targeting for Boron Neutron Capture Therapy (BNCT) is possible with “less-than-ideal” boron carriers approved for use in humans. Ther Deliv (Future Medicine) 6(3):269–272CrossRefGoogle Scholar
  54. Sham RL (1995) The abscopal effect and chronic lymphocytic leukemia. Am J Med 98(3):307–308CrossRefGoogle Scholar
  55. Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I (2013) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85(2):293–295CrossRefGoogle Scholar
  56. Takaya M, Niibe Y, Tsunoda S, Jobo T, Imai M, Kotani S, Unno N, Hayakawa K (2007) Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma-a case report. Anticancer Res 27(1B):499–503Google Scholar
  57. Trivillin VA, Heber EM, Nigg DW, Itoiz ME, Calzetta O, Blaumann H, Longhino J, Schwint AE (2006) Therapeutic success of boron neutron capture therapy (BNCT) mediated by a chemically non-selective boron agent in an experimental model of oral cancer: a new paradigm in BNCT radiobiology. Radiat Res 166:387–396ADSCrossRefGoogle Scholar
  58. Trivillin VA, Heber EM, Rao M, Cantarelli MA, Itoiz ME, Nigg DW, Calzetta O, Blaumann H, Longhino J, Schwint AE (2008) Boron neutron capture therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines. Radiat Environ Biophys 47(1):147–155CrossRefGoogle Scholar
  59. Vatner RE, Cooper BT, Vanpouille-Box C, Demaria S, Formenti SC (2014) Combinations of immunotherapy and radiation in cancer therapy. Front Oncol 4:325CrossRefGoogle Scholar
  60. Wang LW, Chen YW, Ho CY, Hsueh Liu YW, Chou FI, Liu YH, Liu HM, Peir JJ, Jiang SH, Chang CW, Liu CS, Wang SJ, Chu PY, Yen SH (2014) Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase I/II clinical trial at Tsing Hua Open-Pool Reactor. Appl Radiat Isot 88:23–27CrossRefGoogle Scholar
  61. Yanagie H, Higashi S, Seguchi K, Ikushima I, Fujihara M, Nonaka Y, Oyama K, Maruyama S, Hatae R, Suzuki M, Masunaga S, Kinashi T, Sakurai Y, Tanaka H, Kondo N, Narabayashi M, Kajiyama T, Maruhashi A, Ono K, Nakajima J, Ono M, Takahashi H, Eriguchi M (2014) Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion. Appl Radiat Isot 88:32–37CrossRefGoogle Scholar
  62. Zenkoh J, Gerelchuluun A, Suzuki K, Wang X, Ito A, Ohno T, Tsuboi K (2015) Radiation induced tumor cell death bring about the “Abscopal Effect” in the Brain. 15th. International Congress of Radiation Research ICRR2015 (Kyoto)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Verónica A. Trivillin
    • 1
    • 2
  • Emiliano C. C. Pozzi
    • 3
  • Lucas L. Colombo
    • 2
    • 4
  • Silvia I. Thorp
    • 5
  • Marcela A. Garabalino
    • 1
  • Andrea Monti Hughes
    • 1
    • 2
  • Sara J. González
    • 2
    • 5
  • Rubén O. Farías
    • 5
  • Paula Curotto
    • 3
  • Gustavo A. Santa Cruz
    • 6
  • Daniel G. Carando
    • 2
    • 7
  • Amanda E. Schwint
    • 1
    • 2
  1. 1.Department of RadiobiologyComisión Nacional de Energía Atómica (CNEA)B1650KNA San MartinArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
  3. 3.Department of Research and Production ReactorsCentro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA)Provincia Buenos AiresArgentina
  4. 4.Instituto de Oncología Ángel H. RoffoCiudad Autónoma de Buenos AiresArgentina
  5. 5.Department of Instrumentation and ControlComisión Nacional de Energía Atómica (CNEA)Provincia Buenos AiresArgentina
  6. 6.Department of Boron Neutron Capture TherapyComisión Nacional de Energía Atómica (CNEA)Provincia Buenos AiresArgentina
  7. 7.Faculty of Exact and Natural SciencesUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations