Advertisement

Radiation and Environmental Biophysics

, Volume 56, Issue 3, pp 269–276 | Cite as

Determination of the thermal and epithermal neutron sensitivities of an LBO chamber

  • Satoru EndoEmail author
  • Hitoshi Sato
  • Takuto Shimazaki
  • Erika Nakajima
  • Kei Kotani
  • Mitsuru Suda
  • Tsuyoshi Hamano
  • Tsuyoshi Kajimoto
  • Kenichi Tanaka
  • Masaharu Hoshi
Original Article
  • 139 Downloads

Abstract

An LBO (Li2B4O7) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm2, i.e., from the chamber response divided by neutron fluence (cm−2). The measured LBO chamber sensitivities were 2.23 × 10−7 ± 0.34 × 10−7 (pC cm2) for thermal neutrons and 2.00 × 10−5 ± 0.12 × 10−5 (pC cm2) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.

Keywords

LBO chamber Thermal neutron sensitivity Epithermal neutron sensitivity BNCT Dose monitoring 

Notes

Acknowledgement

The authors are grateful to the staff at the Biological Effects Experiments (NASBEE), National Institute for Radiological Science (NIRS) for their excellent operation of the accelerator. This study was performed as collaboration between Hiroshima University and NIRS. The authors are also grateful to Mr. Atsushi Higashimata, Sanki Industry, for manufacturing the LBO chamber. This research was supported by Japan Society for the Promotion of Science KAKENHI Grants Nos. 26257501 (April 2014–March 2018), 24310044 (April 2012–March 2015) and 15K00544 (April 2015–March 2019).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflict interest.

References

  1. American Association of Physicists in Medicine by the American Institute of Physics (AAPM) (1980) Protocol for neutron beam dosimetry, AAPM report No. 7Google Scholar
  2. Becker J, Brunckhorst E, Roca A, Stecher-Rasmussen F, Moss R, Bottger R, Schmidt R (2007) Set-up and calibration of a triple ionization chamber system for dosimetry in mixed neutron/photon fields. Phys Med Biol 52(13):3715–3727CrossRefGoogle Scholar
  3. Blackburn BW, Yanch J C (1999) Liquid gallium cooling of a high-power beryllium target for use in accelerator boron neutron capture therapy (ABNCT). In: Proceedings of the 8th workshop on targetry and target chemistry, Missouri, 23–26 June 1999Google Scholar
  4. Bleuel DL, Donahue RJ (1996) Optimization of the 7Li(p, n) proton beam energy for BNCT application, LBL-37983. Lawrence Berkeley National Laboratory, BerkeleyGoogle Scholar
  5. Burlon AA, Kreiner AJ (2008) A comparison between a TESQ accelerator and a reactor as a neutron sources for BNCT”. Nucl Instrum Methods Phys Res Sect B 266:763–771ADSCrossRefGoogle Scholar
  6. Endo S, Shizuma K, Tanaka K, Ishikawa M, Rühm W, Egbert SD, Hoshi M (2007) Radioactivity in atomic bomb samples from exposure to environmental neutrons. Health Phys 93(6):689–695CrossRefGoogle Scholar
  7. International Commission on Radiation Units and Measurements (ICRU) (1977) Neutron dosimetry for biology and medicine-ICRU report 26. Woodmont Avenue 7910, Washington, D.C.Google Scholar
  8. International Commission on Radiation Units and Measurements (ICRU) (2000) Nuclear data for neutron and proton radiation therapy and radiation protection, ICRU report 63. Woodmont Avenue 7910, Washington, D.C.Google Scholar
  9. Kim J, Kim K (2009) Current research on accelerator-based boron neutron capture therapy in Korea. Nucl eng technol 41(4):531–544CrossRefGoogle Scholar
  10. Kononov OE, Kononov VN, Bokhovko MV, Korobeynikov VV, Soloviev AN, Sysoev AS, Gulidov IA, Chu WT, Nigg DW (2004) Optimization of an accelerator-based epithermal neutron source for neutron capture therapy. Appl Radiat Isot 61:1009–1013CrossRefGoogle Scholar
  11. Kosunen A, Kortesniemi M, Yla-Mella H, Seppaä T, Lampinen J, Seren T, Auterinen I, Jarvinen H, Savolainen S (1999) Twin ionization chambers for dose determinations in phantom in an epithermal neutron beam. Radiat Prot Dosim 81(3):187–194CrossRefGoogle Scholar
  12. Meadows JW (1993) The 9Be(d, n) thick-target neutron spectra for deuteron energies between 2.6 and 7.0 MeV. Nucl Instrum Meth Phys Res A324:239–246ADSCrossRefGoogle Scholar
  13. Nguyen TT, Kajimoto T, Tanaka K, Nguyen CC, Endo S (2016) Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field. Med Phys 43:6049CrossRefGoogle Scholar
  14. Raaijmakers CPJ, Watkins PRD, Nottelman EL, Verhagen HW, Jansen JTM, Zoetelief J, Mijnheer BJ (1996) The neutron sensitivity of dosimeters applied to boron neutron capture therapy. Med Phys 23(9):85–93CrossRefGoogle Scholar
  15. Randers-Pehrsona G, Brenner DJ (1998) A practical target system for accelerator-based BNCT which may effectively double the dose rate. Med Phys 25:894–896CrossRefGoogle Scholar
  16. Rogus RD, Harling OK, Yanch JC (1994) Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med Phys 21:1611–1625CrossRefGoogle Scholar
  17. Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Noda S, Ogawa T, Iwase H, Nakashima H, Fukahori T, Okumura K, Kai T, Chiba S, Furuta T, Sihver L (2013) Particle and heavy ion transport code system PHITS, version 2.52. J Nucl Sci Technol 50(9):913–923CrossRefGoogle Scholar
  18. Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48(1):1–30CrossRefGoogle Scholar
  19. Suda M, Hagihara T, Suya N, Hamano T, Takada M, Konishi T, Maeda T, Ohmachi Y, Kakinuma S, Ariyoshi K, Shimada Y, Imaseki H (2009) Specifications of a neutron exposure accelerator system for biological effects experiments (NASBEE) in NIRS. Radiat Phys Chem. doi: 10.1016/j.radphyschem.2009.05.010(2009-06-03) Google Scholar
  20. Tanaka K, Kobayashi T, Sakurai S, Nakagawa Y, Endo S, Hoshi M (2002) Irradiation characteristics of BNCT using near-threshold 7Li(p, n) 7Be direct neutrons: application to intra-operative BNCT for malignant brain tumours. Phys Med Biol 47:3011–3032CrossRefGoogle Scholar
  21. Tanaka K, Kobayashi T, Bengua G, Nakagawa Y, Endo S, Hoshi M (2004) Characteristics of BDE dependent on 10B concentration for accelerator-based BNCT using near-threshold 7Li(p, n) 7Be direct neutrons. Appl Radiat Isot 61:875–879CrossRefGoogle Scholar
  22. Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Mitsumoto T, Fujita K, Kashino G, Kinashi Y, Liu Y, Takada M, Ono K, Maruhashi A (2011) Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Appl Radiat Isot 69:1642–1645CrossRefGoogle Scholar
  23. Wei Z, Yan Y, Yao ZE, Lan CL, Wang J (2013) Evaluation of the neutron energy spectrum, angular distribution, and yield of the 9Be(d, n) reaction with a thick beryllium target. Phys Rev C 87:054605ADSCrossRefGoogle Scholar
  24. Yonai S, Itoga T, Baba M, Nakamura T, Yokobori H, Tahara Y (2004) Benchmark experiments for cyclotron based neutron source for BNCT. Appl Radiat Isot 61:997–1001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Satoru Endo
    • 1
    Email author
  • Hitoshi Sato
    • 2
  • Takuto Shimazaki
    • 1
    • 5
  • Erika Nakajima
    • 2
  • Kei Kotani
    • 1
  • Mitsuru Suda
    • 3
  • Tsuyoshi Hamano
    • 3
  • Tsuyoshi Kajimoto
    • 1
  • Kenichi Tanaka
    • 1
  • Masaharu Hoshi
    • 4
  1. 1.Quantum Energy Applications, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Radiological SciencesIbaraki Prefectural University of Health ScienceInashiki-GunJapan
  3. 3.National Institute of Radiological SciencesChiba-ShiJapan
  4. 4.Institute for Peace ScienceHiroshima UniversityHiroshimaJapan
  5. 5.Delta Kogyo Co., Ltd.HiroshimaJapan

Personalised recommendations