Advertisement

Radiation and Environmental Biophysics

, Volume 55, Issue 3, pp 381–391 | Cite as

Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

  • Lydia Laschinsky
  • Leonhard Karsch
  • Elisabeth Leßmann
  • Melanie Oppelt
  • Jörg Pawelke
  • Christian Richter
  • Michael Schürer
  • Elke BeyreutherEmail author
Original Article

Abstract

Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 1010 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

Keywords

Laser-driven radiotherapy Cell response to electron beams Pulsed irradiation Ultra-high pulse dose rate Normal tissue cell culture 

Notes

Acknowledgments

The authors are much obligated to the ELBE crew for their continuing interest and support of the presented study. The work was supported by the German Government, Federal Ministry of Education and Research, Grant Nos. 03ZIK445 and 03Z1N511.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interests.

Human and animal right statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Acharya S, Bhat NN, Joseph P, Sanjeev G, Sreedevi B, Narayana Y (2011) Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons. Radiat Environ Biophys 50:253–263. doi: 10.1007/s00411-011-0353-1 CrossRefGoogle Scholar
  2. Auer S, Hable V, Greubel C, Drexler GA, Schmid TE, Belka C, Dollinger G, Friedl AA (2011) Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiat Oncol 6:139. doi: 10.1186/1748-717X-6-139 CrossRefGoogle Scholar
  3. Berry RJ, Stedeford JB (1972) Reproductive survival of mammalian cells after irradiation at ultra-high dose-rates: further observations and their importance for radiotherapy. Br J Radiol 45:171–177. doi: 10.1259/0007-1285-45-531-171 CrossRefGoogle Scholar
  4. Beyreuther E, Lessmann E, Pawelke J, Pieck S (2009) DNA double-strand break signalling: X-ray energy dependence residual co-localised foci of gamma-H2AX and 53BP1. Int J Radiat Biol 85:1042–1050. doi: 10.3109/09553000903232884 CrossRefGoogle Scholar
  5. Beyreuther E, Enghardt W, Kaluza M, Karsch L, Laschinsky L, Lessmann E, Nicolai M, Pawelke J, Richter C, Sauerbrey R, Schlenvoigt HP, Baumann M (2010) Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons. Med Phys 37:1392–1400. doi: 10.1118/1.3301598 CrossRefGoogle Scholar
  6. Beyreuther E, Karsch L, Laschinsky L, Lessmann E, Naumburger D, Oppelt M, Richter C, Schürer M, Woithe J, Pawelke J (2015) Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate. Int J Radiat Biol 91:643–652. doi: 10.3109/09553002.2015.1043755 CrossRefGoogle Scholar
  7. Bin J, Allinger K, Assmann W, Dollinger G, Drexler GA, Friedl AA, Habs D, Hilz P, Hoerlein R, Humble N, Karsch S, Khrennikov K, Kiefer D, Krausz F, Ma W, Michalski D, Molls M, Raith S, Reinhardt S, Röper B, Schmid TE, Tajima T, Wenz J, Zlobinskaya O, Schreiber J, Wilkens JJ (2012) A laser-driven nanosecond proton source for radiobiological studies. Appl Phys Lett 101:243701. doi: 10.1063/1.4769372 ADSCrossRefGoogle Scholar
  8. Brüchner K, Beyreuther E, Baumann M, Krause M, Oppelt M, Pawelke J (2014) Establishment of a small animal tumour model for in vivo studies with low energy laser accelerated particles. Radiat Oncol 9:57. doi: 10.1186/1748-717X-9-57 CrossRefGoogle Scholar
  9. Cygler J, Klassen NV, Ross CK, Bichay TJ, Raaphorst GP (1994) The survival of aerobic and anoxic human glioma and melanoma cells after irradiation at ultrahigh and clinical dose rates. Radiat Res 140:79–84. doi: 10.2307/3578571 CrossRefGoogle Scholar
  10. DeVeaux LC, Wells DP, Hunt A, Webb T, Beezhold W, Harmon JF (2006) Accelerator-based radiation sources for next-generation radiobiological research. Nucl Instr Methods Phys Res A 562:981–984. doi: 10.1016/j.nima.2006.02.119 ADSCrossRefGoogle Scholar
  11. Doria D, Kakolee KF, Kar S, Litt SK, Fiorini F, Ahmed H, Green S, Jeynes JCG, Kavanagh J, Kirby D, Kirkby KJ, Lewis CL, Merchant MJ, Nersisyan G, Prasad R, Prise KM, Schettino G, Zepf M, Borghesi M (2012) Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Adv 2:011209. doi: 10.1063/1.3699063 ADSCrossRefGoogle Scholar
  12. Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, Poupon MR, Brito I, Hupé P, Bourhis J, Hall J, Fontaine JJ, Vozenin MC (2014) Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med 6:245ra93. doi: 10.1126/scitranslmed.3008973 CrossRefGoogle Scholar
  13. Gabriel F, Gippner P, Grosse E, Janssen D, Michel P, Prade H, Schamlott A, Seidel W, Wolf A, Wünsch R, ELBE-crew (2000) The Rossendorf radiation source ELBE and its FEL projects. Nucl Instrum Methods B 161:1143–1147. doi: 10.1016/S0168-583X(99)00909-X ADSCrossRefGoogle Scholar
  14. Karsch L, Pawelke J (2014) Theoretical investigation of the saturation correction for ionization chambers irradiated with pulsed beams of arbitrary pulse length. Z Med Phys 24:201–210. doi: 10.1016/j.zemedi.2013.10.007 CrossRefGoogle Scholar
  15. Karsch L, Richter C, Pawelke J (2011) Experimentelle Untersuchung der Sättigungskorrelation einer PTW Roos-Ionisationskammer in gepulsten Strahlungsfeldern mit hoher Pulsdosis bei verschiedenen Pulsdauern. Z Med Phys 21:4–10. doi: 10.1016/j.zemedi.2010.10.008 CrossRefGoogle Scholar
  16. Kraft SD, Richter C, Zeil K, Baumann M, Beyreuther E, Bock S, Bussmann M, Cowan TE, Dammene Y, Enghardt W, Helbig U, Karsch L, Kluge T, Laschinsky L, Leßmann E, Metzkes J, Naumburger D, Sauerbrey R, Schürer M, Sobiella M, Woithe J, Schramm U, Pawelke J (2010) Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J Phys 12:085003. doi: 10.1088/1367-2630/12/8/085003 CrossRefGoogle Scholar
  17. Labate L, Andreassi MG, Baffigi F, Basta G, Bizzarri R, Borghini A, Candiano GC, Casarino C, Cresci M, Martino FD, Fulgentini L, Ghetti F, Gilardi MC, Giulietti A, Köster P, Lenci F, Levato T, Oishi Y, Russo G, Sgarbossa A, Traino C, Gizzi LA (2013) Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness. In: Proceedings of SPIE, p 8779. doi:  10.1117/12.2019689
  18. Laschinsky L, Baumann M, Beyreuther E, Enghardt W, Kaluza M, Karsch L, Lessmann E, Naumburger D, Nicolai M, Richter C, Sauerbrey R, Schlenvoigt HP, Pawelke J (2012) Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator. J Radiat Res 53:395–403. doi: 10.1269/jrr.11080 CrossRefGoogle Scholar
  19. Ledingham KWD, Galster W, Sauerbrey R (2007) Laser-driven proton oncology—a unique new cancer therapy. Br J Radiol 80:855–858. doi: 10.1259/bjr/29504942 CrossRefGoogle Scholar
  20. Linz U, Alonso J (2007) What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys Rev Spec Accel Beams 10:094801. doi: 10.1103/PhysRevSTAB.10.094801 ADSCrossRefGoogle Scholar
  21. Lundh O, Rechatin C, Faure J, Ben-Ismaïl A, Lim J, De Wagter C, De Neve W, Malka V (2012) Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator. Med Phys 39:3501–3508. doi: 10.1118/1.4719962 CrossRefGoogle Scholar
  22. Michaels HB, Epp ER, Ling CC, Peterson EC (1978) Oxygen sensitization of CHO cells at ultrahigh dose rates: prelude to oxygen diffusion studies. Radiat Res 76:510–521. doi: 10.2307/3574800 CrossRefGoogle Scholar
  23. Oppelt M, Baumann M, Bergmann R, Beyreuther E, Brüchner K, Hartmann J, Karsch L, Krause M, Laschinsky L, Leßmann E, Nicolai M, Reuter M, Richter C, Sävert A, Schürer M, Schnell M, Woithe J, Kaluza M, Pawelke J (2015) Comparison study of in vivo dose response to laser-driven versus conventional electron beam. Radiat Environ Biophys 54:155–166. doi: 10.1007/s00411-014-0582-1 CrossRefGoogle Scholar
  24. Purdie JW, Inhaber ER, Klassen NV (1980) Increased sensitivity of mammalian cells irradiated at high dose rates under oxic conditions. Int J Radiat Biol Relat Stud Phys Chem Med 37:331–335CrossRefGoogle Scholar
  25. Purrott RJ, Reeder EJ (1977) Chromosome aberration yields induced in human lymphocytes by 15 MeV electrons given at a conventional dose-rate and in microsecond pulses. Int J Radiat Biol Relat Stud Phys Chem Med 31:251–256. doi: 10.1080/09553007714550291 CrossRefGoogle Scholar
  26. Richter C, Pawelke J, Karsch L, Woithe J (2009) Energy dependence of EBT-1 radiochromic film response for photon (10 kVp–15 MVp) and electron beams (6–18 MeV) readout by a flatbed scanner. Med Phys 36:5506–5514. doi: 10.1118/1.3253902 CrossRefGoogle Scholar
  27. Richter C, Kaluza M, Karsch L, Schlenvoigt HP, Schürer M, Sobiella M, Woithe J, Pawelke J (2011) Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments. Radiat Meas 46:2006–2009. doi: 10.1016/j.radmeas.2011.04.019 CrossRefGoogle Scholar
  28. Rigaud O, Fortunel NO, Vaigot P, Cadio E, Martin MT, Lundh O, Faure J, Rechatin C, Malka V, Gauduel YA (2010) Exploring ultrashort high-energy electron-induced damage in humane carcinoma cells. Cell Death Dis 1:e73. doi: 10.1038/cddis.2010.46 CrossRefGoogle Scholar
  29. Sato K, Nishikino M, Okano Y, Ohshima S, Hasegawa N, Ishino M, Kawachi T, Numasaki H, Teshima T, Nishimura H (2010) γ-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation. Radiat Res 174:436–445. doi: 10.1667/RR2178.1 CrossRefGoogle Scholar
  30. Schmid TE, Dollinger G, Hauptner A, Hable V, Greubel C, Auer S, Friedl AA, Molls M, Röper B (2009) No evidence for a different RBE between pulsed and continuous 20 MeV protons. Radiat Res 172:567–574. doi: 10.1667/RR1539.1 CrossRefGoogle Scholar
  31. Schmid TE, Dollinger G, Hable V, Greubel C, Zlobinskaya O, Michalski D, Molls M, Röper B (2010) Relative biological effectiveness of pulsed and continuous 20 MeV protons for micronucleus induction in 3D human reconstructed skin tissue. Radiother Oncol 95:66–72. doi: 10.1016/j.radonc.2010.03.010 CrossRefGoogle Scholar
  32. Schürer M, Baumann M, Beyreuther E, Brüchner K, Enghardt W, Kaluza M, Karsch L, Laschinsky L, Leßmann E, Nicolai M, Oppelt M, Reuter M, Richter C, Sävert A, Schnell M, Woithe J, Pawelke J (2012) Irradiation system for pre-clinical studies with laser accelerated electrons. Biomed Tech 57(Suppl. 1):62–65. doi: 10.1515/bmt-2012-4244 Google Scholar
  33. Shinohara K, Nakano H, Miyazaki N, Tago M, Kodama R (2004) Effects of single-pulse (≤1 ps) X-rays from laser-produced plasmas on mammalian cells. J Radiat Res 45:509–514. doi: 10.1269/jrr.45.509 CrossRefGoogle Scholar
  34. Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82:2394–2398ADSCrossRefGoogle Scholar
  35. Tillman C, Grafström G, Jonsson AC, Jönsson BA, Mercer I, Mattsson S, Strand SE, Svanberg S (1999) Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma x-ray source. Radiology 213:860–865. doi: 10.1148/radiology.213.3.r99dc13860 CrossRefGoogle Scholar
  36. Yogo A, Maeda T, Hori T, Sakaki H, Ogura K, Nishiuchi M, Sagisaka A, Kiriyama H, Okada H, Kanazawa S, Shimomura T, Nakai Y, Tanoue M, Sasao F, Bolton PR, Murakami M, Nomura T, Kawanishi S, Kondo K (2011) Measurement of relative biological effectiveness of protons in human cancer cells using laser-driven quasimonoenergetic proton beamline. Appl Phys Lett 98:053701. doi: 10.1063/1.3551623 ADSCrossRefGoogle Scholar
  37. Zeil K, Beyreuther E, Lessmann E, Wagner W, Pawelke J (2009) Cell irradiation setup and dosimetry for radiobiological studies at ELBE. Nucl Instrum Meth Phys Res B 267:2403–2410. doi: 10.1016/j.nimb.2009.04.015 ADSCrossRefGoogle Scholar
  38. Zeil K, Baumann M, Beyreuther E, Burris-Mog T, Cowan TE, Enghardt W, Karsch L, Kraft SD, Laschinsky L, Metzkes J, Naumburger D, Oppelt M, Richter C, Sauerbrey R, Schürer M, Schramm U, Pawelke J (2013) Dose-controlled irradiation of cancer cells with laser accelerated proton pulses. Appl Phys B 110:437–444. doi: 10.1007/s00340-012-5275-3 ADSCrossRefGoogle Scholar
  39. Zlobinskaya O, Dollinger G, Michalski D, Hable V, Greubel C, Du G, Multhoff G, Röper B, Molls M, Schmid TE (2012) Induction and repair of DNA double-strand breaks assessed by gamma-H2AX foci after irradiation with pulsed or continuous proton beams. Radiat Environ Biophys 51:23–32. doi: 10.1007/s00411-011-0398-1 CrossRefGoogle Scholar
  40. Zlobinskaya O, Siebenwirth C, Greubel C, Hable V, Hertenberger R, Humble N, Reinhardt S, Michalski D, Röper B, Multhoff G, Dollinger G, Wilkens JJ, Schmid TE (2014) The effects of ultra-high dose rate proton irradiation on growth delay in the treatment of human tumor xenografts in nude mice. Radiat Res 181(2):177–183. doi: 10.1667/RR13464.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lydia Laschinsky
    • 1
    • 2
    • 3
  • Leonhard Karsch
    • 1
  • Elisabeth Leßmann
    • 2
  • Melanie Oppelt
    • 1
    • 2
    • 4
  • Jörg Pawelke
    • 1
    • 2
  • Christian Richter
    • 1
    • 2
  • Michael Schürer
    • 1
  • Elke Beyreuther
    • 2
    Email author
  1. 1.OncoRay – National Centre for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  2. 2.Institute of Radiation PhysicsHelmholtz-Zentrum Dresden – Rossendorf (HZDR)DresdenGermany
  3. 3.Menarini – Von Heyden GmbHDresdenGermany
  4. 4.Quintiles GmbHNeu-IsenburgGermany

Personalised recommendations