Radiation and Environmental Biophysics

, Volume 54, Issue 4, pp 379–401 | Cite as

Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

  • Werner Rühm
  • Gayle E. Woloschak
  • Roy E. Shore
  • Tamara V. Azizova
  • Bernd Grosche
  • Ohtsura Niwa
  • Suminori Akiba
  • Tetsuya Ono
  • Keiji Suzuki
  • Toshiyasu Iwasaki
  • Nobuhiko Ban
  • Michiaki Kai
  • Christopher H. Clement
  • Simon Bouffler
  • Hideki Toma
  • Nobuyuki Hamada
Controversial Issue

Abstract

The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.

Keywords

Radiation risk LNT model DDREF LDEF DREF ICRP 

References

  1. Akiba S, Mizuno S (2012) The third analysis of cancer mortality among Japanese nuclear workers, 1991–2002: estimation of excess relative risk per radiation dose. J Radiol Prot 32:73–83CrossRefGoogle Scholar
  2. Beels L, Bacher K, De Wolf D, Werbrouck J, Thierens H (2009) γ-H2AX foci as a biomarker for patient X-ray exposure in paediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120:1903–1909CrossRefGoogle Scholar
  3. Beels L, Werbrouck J, Thierens H (2010) Dose response and repair kinetics of γ-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and γ-radiation. Int J Radiat Biol 86:760–768CrossRefGoogle Scholar
  4. Birschwilks M, Gruenberger M, Adelmann C, Tapio S, Gerber G, Schofield PN, Grosche B (2011) The European radiobiological archives: online access to data from radiobiological experiments. Radiat Res 175:526–531CrossRefGoogle Scholar
  5. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Bermann F, Cowper G, Fix J, Hacker C, Heinmiller B, Marshall M, Thierry-Chef I, Utterback D, Ahn YO, Amoros E, Ashmore P, Auvinen A, Bae JM, Solano JB, Biau A, Combalot E, Deboodt P, Diez Sacristan A, Eklof M, Engels H, Engholm G, Gulis G, Habib R, Holan K, Hyvonen H, Kerekes A, Kurtinaitis J, Malker H, Martuzzi M, Mastauskas A, Monnet A, Moser M, Pearce MS, Richardson DB, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2005) Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ 331:77CrossRefGoogle Scholar
  6. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Bermann F, Cowper G, Fix J, Hacker C, Heinmiller B, Marshall M, Thierry-Chef I, Utterback D, Ahn YO, Amoros E, Ashmore P, Auvinen A, Bae JM, Bernar J, Biau A, Combalot E, Deboodt P, Diez Sacristan A, Eklöf M, Engels H, Engholm G, Gulis G, Habib RR, Holan K, Hyvonen H, Kerekes A, Kurtinaitis J, Malker H, Martuzzi M, Mastauskas A, Monnet A, Moser M, Pearce MS, Richardson DB, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416CrossRefGoogle Scholar
  7. Carnes BA, Fritz TE (1991) Responses of the beagle to protracted irradiation. I. Effect of total dose and dose rate. Radiat Res 128:125–132CrossRefGoogle Scholar
  8. Carnes BA, Fritz TE (1993) Continuous irradiation of beagles with γ rays. Radiat Res 136:103–110CrossRefGoogle Scholar
  9. Cologne J, Preston DL (2001) Impact of comparison group on cohort dose response regression: an example using risk estimation in atomic-bomb survivors. Health Phys 80:491–496CrossRefGoogle Scholar
  10. Daniels RD, Bertke S, Waters KM, Schubauer-Berigan MK (2013) Risk of leukaemia mortality from exposure to ionising radiation in US nuclear workers: a pooled case-control study. Occup Environ Med 70:41–48CrossRefGoogle Scholar
  11. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomásek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330:223CrossRefGoogle Scholar
  12. Degteva MO, Kozheurov VP, Tolstykh EI, Vorobiova MI, Anspaugh LR, Napier BA, Kovtun AN (2000) The Techa River dosimetry system: methods for the reconstruction of internal dose. Health Phys 79:24–35CrossRefGoogle Scholar
  13. Degteva MO, Vorobiova MI, Tolstykh EI, Shagina NB, Shishkina EA, Anspaugh LR, Napier BA, Bougrov NG, Shved VA, Tokareva EE (2006) Development of an improved dose reconstruction system for the Techa River population affected by the operation of the Mayak Production Association. Radiat Res 166:255–270CrossRefGoogle Scholar
  14. Degteva MO, Shagina NB, Tolstykh EI, Vorobiova MI, Anspaugh LR, Napier BA (2009) Individual dose calculations with use of the Revised Techa River Dosimetry System TRDS-2009D. Final Report for Milestone 22. Chelyabinsk, Russia and Sault Lake City, Utah: Urals Research Center for Radiation Medicine and University of UtahGoogle Scholar
  15. Degteva MO, Shagina NB, Vorobiova MI, Anspaugh LR, Napier BA (2012) Reevaluation of waterborne releases of radioactive materials from the Mayak Production Association into the Techa River in 1949-1951. Health Phys 102:25–38CrossRefGoogle Scholar
  16. Gerber G, Watson C, Sugahara T, Okada S (1996) International radiobiology archives of long-term animal studies I. Descriptions of participating institutions and studies. Retrieved from http://www.ustur.wsu.edu/NRA/pdf/IRA.pdf
  17. Ghandhi SA, Smilenov LB, Elliston CD, Chowdhury M, Amundson SA (2015) Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med Genomics 8:22CrossRefGoogle Scholar
  18. Grudzenski S, Raths A, Conrad S, Rube CE, Lobrich M (2010) Inducible response required for repair of low dose radiation damage in human fibroblasts. Proc Natl Acad Sci USA 107:14205–14210CrossRefADSGoogle Scholar
  19. Haley B, Wang Q, Wanzer B, Vogt S, Finney L, Yang PL, Paunesku T, Woloschak G (2011) Past and future work on radiobiology mega-studies: a case study at Argonne National Laboratory. Health Phys 100:613–621CrossRefGoogle Scholar
  20. Haley B, Paunesku T, Grdina D, Woloschak G (2015) Animal mortality risk increase following low-LET radiation exposure is not linear-quadratic. PLOS ONE (submitted in June 2015)Google Scholar
  21. Hamada N, Maeda M, Otsuka K, Tomita M (2011) Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects. Curr Mol Pharmacol 4:79–95CrossRefGoogle Scholar
  22. Hayata I, Wang C, Zhang W, Chen D, Minamihisamatsu M, Morishima H, Wei L, Sugahara T (2004) Effect of high level natural radiation on chromosomes of residents in southern China. Cytogenet Genome Res 104:237–239CrossRefGoogle Scholar
  23. High Background Radiation Research Group, China (1980) Health survey in high background radiation area in China. Science 209:877–880CrossRefGoogle Scholar
  24. Hoel DG (2015) Comments on the DDREF estimate of the BEIR VII Committee. Health Phys 108:351–356CrossRefGoogle Scholar
  25. Hosoda M, Tokonami S, Omori Y, Sahoo SK, Akiba S, Sorimachi A, Ishikawa T, Nair RR, Jayalekshmi PA, Sebastian P, Iwaoka K, Akata N, Kudo H (2015) Estimation of external dose by car-borne survey in kerala, India. PLOS ONE 10:e0124433CrossRefGoogle Scholar
  26. Hsu W-L, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K (2013) The Incidence of Leukemia, Lymphoma and Multiple Myeloma among Atomic Bomb Survivors: 1950–2001. Radiat Res 179:361–382CrossRefGoogle Scholar
  27. ICRP (1991) 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP 21(1–3)Google Scholar
  28. ICRP (2005) Low-dose extrapolation of radiation-related cancer risk. ICRP Publication 99. Ann ICRP 35(4)Google Scholar
  29. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 7(2–4)Google Scholar
  30. ICRP (2013a) ICRP Main Commission Meeting. April 15 to 18, 2013—Cambridge, UK. http://www.icrp.org/docs/Summary%20of%20April%202013%20Main%20Commission%20Meeting%20in%20Cambridge%20UK.pdf
  31. ICRP (2013b) Task Group 91. Radiation risk inference at low-dose and low-dose rate exposure for radiological protection purposes. http://www.icrp.org/icrp_group.asp?id=83
  32. ICRP (2015) Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. ICRP Publication 131. Ann ICRP 44(3–4)Google Scholar
  33. Jacob P, Rühm W, Walsh L, Blettner M, Hammer G, Zeeb H (2009) Is cancer risk of radiation workers larger than expected? Occup Environ Med 66:789–796CrossRefGoogle Scholar
  34. Jayalekshmi P, Rajan B (2007) Cancer incidence in Karunagapally 1998–2002, Kerala, India. In: Cuardo MP, Edwards B, Shin HR, Storm H, Ferlay J, Heanue M, Boyle P, eds. Cancer incidence in five continents, vol IX. Lyon: International Agency for Research on Cancer; IARC Publication 160Google Scholar
  35. Kajita M, Fujita Y (2015) EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals. J Biochem 158:15–23CrossRefGoogle Scholar
  36. Kellerer AM, Rossi HH (1972) The theory of dual radiation action. Curr Top Radiat Res Q 8:85–158Google Scholar
  37. Kendall GM, Little MP, Wakeford R, Bunch KJ, Miles JC, Vincent TJ, Meara JR, Murphy MF (2013) A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980-2006. Leukemia 27:3–9CrossRefGoogle Scholar
  38. Khokhryakov VV, Khokhryakov VF, Suslova KG, Vostrotin VV, Vvedensky VE, Sokolova AB, Krahenbuhl MP, Birchall A, Miller SC, Schadilov AE, Ephimov AV (2013) Mayak Workers Dosimetry System 2008 (MWDS-2008): assessment of internal α-dose from measurement results of plutonium activity in urine. Health Phys 104:366–378CrossRefGoogle Scholar
  39. Krestinina LY, Davis FG, Schonfeld S, Preston DL, Degteva M, Epifanova S, Akleev AV (2013) Leukemia incidence in the Techa River Cohort: 1953–2007. Br J Cancer 109:2886–2893CrossRefGoogle Scholar
  40. Kudo H, Tokonami S, Omori Y, Ishikawa T, Iwaoka K, Sahoo SK, Akata N, Hosoda M, Wanabongse P, Pornnumpa C, Sun Q, Li X, Akiba S (2015) Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat Prot Dosimetry. doi:10.1093/rpd/ncv235 Google Scholar
  41. Kuznetsova IS, Labutina EV, Hunter N, Haylock R (2015) Radiation risks of leukemia, lymphoma and multiple myeloma incidence among workers at the Mayak PA: 1948–2004. PLOS ONE (submitted in February 2015)Google Scholar
  42. Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, Hamra GB, Haylock R, Laurier D, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A (2015) Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2:e276–e281CrossRefGoogle Scholar
  43. Löbrich M, Jeggo P (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7:861–869CrossRefGoogle Scholar
  44. Loucas BD, Eberle R, Bailey SM, Cornforth MN (2004) Influence of dose rate on the induction of simple and complex chromosome exchanges by γ rays. Radiat Res 162:339–349CrossRefGoogle Scholar
  45. Manning G, Kabacik Finnon P, Bouffler S, Badie C (2013) High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 89:512–522CrossRefGoogle Scholar
  46. Manning G, Taylor K, Finnon P, Lemon JA, Boreham DR, Badie C (2014) Quantifying murine bone marrow and blood radiation dose response following 18F-FDG PET with DNA damage biomarkers. Mutat Res 770:29–36CrossRefGoogle Scholar
  47. Morgan WF, Sowa MB (2015) Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects. Cancer Lett 356:17–21CrossRefGoogle Scholar
  48. Nair MK, Amma S, Mani KS (1997) India, Karunagappally 1990–1994. In: Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J, eds. Cancer incidence in five continents, vol VII. Lyon: International Agency for Research on Cancer; IARC Publication 143:350–353Google Scholar
  49. Nair MK, Gangadharan P, Jayalakshmi P, Mani KS (2002) Cancer incidence in Karunagappally 1993–1997, Kerala, India. In: Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB, eds. Cancer incidence in five continents, vol VIII. Lyon: International Agency for Research on Cancer; IARC Publication 155:240–241Google Scholar
  50. Nair RR, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Makamura S, Sugahara T (2009) Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys 96:55–66CrossRefGoogle Scholar
  51. Nakajima T, Taki K, Wang B, Ono T, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M (2008) Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate γ-rays. J Radiat Res 49:661–666CrossRefGoogle Scholar
  52. NAS (2006) Health risks from exposure to low levels of ionizing radiation (BEIR VII Phase 2). National Academy Press, WashingtonGoogle Scholar
  53. NCRP (1980) Influence of dose and its distribution in time on dose-response relationships for low-LET radiations, NCRP Report No. 64. Issued April 1, 1980. Bethesda, MarylandGoogle Scholar
  54. Neary GJ (1965) Chromosome aberrations and the theory of RBE. General considerations. Int J Radiat Biol 9:477–502CrossRefGoogle Scholar
  55. Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, Dyball J, Asaithamby A, Chen DJ, Bissell MJ, Thalhammer S, Costes SV (2012) Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci USA 109:443–448CrossRefADSGoogle Scholar
  56. Ojima M, Furutani A, Ban N, Kai M (2011) Persistence of DNA double strand breaks in normal human cells induced by radiation-induced bystander effect. Radiat Res 175:90–96CrossRefGoogle Scholar
  57. Okudaira N, Uehara Y, Fujikawa K, Kagawa N, Ootsuyama A, Norimura T, Saeki K, Nohmi T, Matsumura K, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Ono T (2010) Radiation dose-rate effect on mutation induction in spleen and liver of gpt delta mice. Radiat Res 173:138–147CrossRefGoogle Scholar
  58. Ostroumova E, Preston DL, Ron E, Krestinina LY, Davis FG, Kossenko M, Akleyev AV (2008) Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956–2004. Br J Cancer 99:1940–1945CrossRefGoogle Scholar
  59. Otsuka K, Iwasaki T (2015) Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing. J Radiat Res 56:615–622CrossRefGoogle Scholar
  60. Otsuka K, Hamada N, Magae J, Matsumoto H, Hoshi Y, Iwasaki T (2013) Ionizing radiation leads to the replacement and de novo production of colonic Lgr5+ stem cells. Radiat Res 179:637–646CrossRefGoogle Scholar
  61. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177:229–243CrossRefGoogle Scholar
  62. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 168:1–64CrossRefGoogle Scholar
  63. Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100:5057–5062CrossRefADSGoogle Scholar
  64. Russell WL, Kelly EM (1982) Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc Natl Acad Sci USA 79:542–544CrossRefADSGoogle Scholar
  65. Schonfeld SJ, Krestinina LY, Epifanova S, Degteva MO, Akleyev AV, Preston DL (2013) Solid cancer mortality in the Techa River cohort (1950–2007). Radiat Res 179:183–189CrossRefGoogle Scholar
  66. Searle AG (1974) Mutation induction in mice. Adv Radiat Biol 4:131–207CrossRefGoogle Scholar
  67. Shagina NB, Vorobiova MI, Degteva MO, Peremyslova LM, Shishkina EA, Anspaugh LR, Napier BA (2012a) Reconstruction of the contamination of the Techa River in 1949-1951 as a result of releases from the “MAYAK” Production Association. Radiat Environ Biophys 51:349–366CrossRefGoogle Scholar
  68. Shagina NB, Tolstakh EI, Degteva MO, Vorobiova MI, Anspaugh LR, Napier BA (2012b) Re-evaluation of radionuclide intakes for Techa River residents on the basis of revised source-term parameters. Health Phys 103:S96–S97Google Scholar
  69. Sokolnikov ME, Preston DL, Gilbert ES, Schonfeld SJ, Koshurnikova NA (2015) Radiation effects on mortality from solid cancers other than lung, liver and bone cancer in the Mayak Worker cohort: 1948–2008. PLoS ONE 10:e0117784CrossRefGoogle Scholar
  70. Spycher BD, Lupatsch JE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, Swiss Pediatric Oncology Group, Swiss National Cohort Study (2015) Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628CrossRefGoogle Scholar
  71. SSK (2014) Dose- and dose-rate-effectiveness factor (DDREF), Recommendation by the German Commission on Radiological Protection with scientific grounds, http://www.ssk.de/SharedDocs/Beratungsergebnisse_E/2014/DDREF_e.html?nn=2876278
  72. Takai D, Todate A, Yanai T, Ichinohe K, Oghiso Y (2011) Enhanced transplantability of a cell line from a murine ovary granulosa cell tumour in syngeneic B6C3F1 mice continuously irradiated with low dose-rate γ-rays. Int J Radiat Biol 87:729–735CrossRefGoogle Scholar
  73. Taki K, Wang B, Nakajima T, Wu Y, Ono T, Uehara Y, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Magae J, Kakimoto A, Nenoi M (2009) Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate γ-rays. J Radiat Res 50:241–252CrossRefGoogle Scholar
  74. Tanaka S, Tanaka BI 3rd, Sasagawa S, Ichinohe K, Takabatake T, Matsushita S, Matsumoto T, Otsu H, Sato F (2003) No lengthening of life span in mice continuously exposed to γ rays at very low dose rates. Radiat Res 160:376–379CrossRefGoogle Scholar
  75. Tanaka BI 3rd, Tanaka S, Ichinohe K, Matsushita S, Matsumoto T, Otsu H, Oghiso Y, Sato F (2007) Cause of death and neoplasia in mice continuously exposed to very low dose rates of γ rays. Radiat Res 167:417–437CrossRefGoogle Scholar
  76. Tanaka K, Kohda A, Sato K, Toyokawa T, Ichinohe K, Ohtaki M, Oghiso Y (2009) Dose rate effectiveness for unstable-type chromosome aberrations detected in mice after continuous irradiation with low-dose-rate γ-rays. Radiat Res 171:290–301CrossRefGoogle Scholar
  77. Tao Z, Akiba S, Zha Y, Sun Q, Zou J, Li J, Liu Y, Yuan Y, Tokonami S, Morishima H, Koga T, Nakamura S, Sugahara T, Wei L (2012) Cancer and non-cancer mortality among Inhabitants in the high background radiation area of Yangjiang, China (1979–1998). Health Phys 102:173–181CrossRefGoogle Scholar
  78. Tapio S, Schofield PN, Adelmann C, Atkinson MJ, Bard JL, Bijwaard H, Birschwilks M, Dubus P, Fiette L, Gerber G, Gruenberger M, Quintanilla-Martinez L, Rozell B, Saigusa S, Warren M, Watson CR, Grosche B (2008) Progress in updating the European Radiobiology Archives. Int J Radiat Biol 84:930–936CrossRefGoogle Scholar
  79. Tolstykh EI, Degteva MO, Vorobiova MI, Peremyslova LM, Shagina NB, Anspaugh LR, Napier BA (2006) Reconstruction of long-lived radionuclide intakes for Techa Riverside residents. Part 2. Cesium-137. Radiat Safety Problems Mayak Production Association Scientific Journal) Special issue 1:68–79 (in Russian, the English abstract is available separately in the issue)Google Scholar
  80. Tolstykh EI, Degteva MO, Peremyslova LM, Shagina NB, Shishkina EA, Krivoshchapov VA, Anspaugh LR, Napier BA (2011) Reconstruction of long-lived radionuclide intakes for Techa Riverside residents: Strotium-90. Health Phys 101:28–47CrossRefGoogle Scholar
  81. Uehara Y, Ito Y, Taki K, Nenoi M, Ichinohe K, Nakamura S, Tanaka S, Ogisho Y, Tanaka K, Matsumoto T, Paunesku T, Wolschak GE, Ono T (2010) Gene expression profiles in mouse liver after long-term low-dose-rate irradiation with γ-rays. Radiat Res 174:611–617CrossRefGoogle Scholar
  82. UNSCEAR (1958) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation General Assembly official records: Thirteenth session Supplement No. 17 (A/3838), http://www.unscear.org/unscear/en/publications/1958.html
  83. UNSCEAR (1962) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, http://www.unscear.org/unscear/en/publications/1962.html
  84. UNSCEAR (1964) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation General Assembly official records: Nineteenth session Supplement No. 14 (A/5814), http://www.unscear.org/unscear/en/publications/1964.html
  85. UNSCEAR (1969) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, http://www.unscear.org/unscear/en/publications/1969.html
  86. UNSCEAR (1977) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation 1977 Report to the General Assembly, with Annexes, http://www.unscear.org/unscear/en/publications/1977.html
  87. UNSCEAR (1986) Genetic and somatic effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation 1986 Report to the General Assembly, with Annexes General Assembly Official Records: Forty-first session, Supplement No. 16 (A/41/16), http://www.unscear.org/unscear/en/publications/1986.html
  88. UNSCEAR (1988) Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation 1988 Report to the General Assembly, with Annexes, http://www.unscear.org/unscear/en/publications/1986.html
  89. UNSCEAR (1993) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/1993.html
  90. UNSCEAR (1994) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1994 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/1994.html
  91. UNSCEAR (2000) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2000_2.html
  92. UNSCEAR (2006) Effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2006 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2006_1.html
  93. UNSCEAR (2010) Summary of low-dose radiation effects on health, http://www.unscear.org/docs/reports/2010/UNSCEAR_2010_Report_M.pdf
  94. UNSCEAR (2012) United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2012 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2012.html
  95. UNSCEAR (2013) Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2013 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2013_1.html
  96. Vasilenko EK, Khokhryakov VF, Miller SC, Fix JJ, Eckerman K, Choe DO, Gorelov M, Khokhryakov VV, Knyasev V, Krahenbuhl MP, Scherpelz RI, Smetanin M, Suslova K, Vostrotin V (2007) Mayak worker dosimetry study: an overview. Health Phys 93:190–206CrossRefGoogle Scholar
  97. Verbiest T, Bouffler S, Nutt SL, Badie C (2015) PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML. Carinogenesis 36:413–419CrossRefGoogle Scholar
  98. Vrijheid M, Cardis E, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Ahn YO, Ashmore P, Auvinen A, Bae JM, Engels H, Gulis G, Habib RR, Hosoda Y, Kurtinaitis J, Malker H, Moser M, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2007a) The 15-Country Collaborative Study of Cancer Risk Among Radiation Workers in the Nuclear Industry: design, epidemiological methods and descriptive results. Radiat Res 167:361–379CrossRefGoogle Scholar
  99. Vrijheid M, Cardis E, Ashmore P, Auvinen A, Bae JM, Engels H, Gilbert E, Gulis G, Habib R, Howe G, Kurtinaitis J, Malker H, Muirhead C, Richardson D, Rodriguez-Artalejo F, Rogel A, Schubauer-Berigan M, Tardy H, Telle-Lamberton M, Usel M, Veress K (2007b) Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. Int J Epidemiol 36:1126–1135CrossRefGoogle Scholar
  100. Wang ZY, Boice JD Jr, Wei LX, Beebe GW, Zha YR, Kaplan MM, Tao ZF, Mazon HR 3rd, Zhang SZ, Schneider AB, Tan B, Wesseler TA, Chen D, Ershow AG, Kleinerman RA, Littlefield LG, Preston D (1990) Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China. J Natl Cancer Inst 82:478–485CrossRefGoogle Scholar
  101. Wang Q, Paunesku T, Woloschak G (2010) Tissue and data archives from irradiation experiments conducted at Argonne National Laboratory over a period of four decades. Radiat Environ Biophys 49:317–324CrossRefGoogle Scholar
  102. WHO (2013) Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami based on a preliminary dose estimation. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Werner Rühm
    • 1
  • Gayle E. Woloschak
    • 2
  • Roy E. Shore
    • 3
  • Tamara V. Azizova
    • 4
  • Bernd Grosche
    • 5
  • Ohtsura Niwa
    • 6
  • Suminori Akiba
    • 7
  • Tetsuya Ono
    • 8
  • Keiji Suzuki
    • 9
  • Toshiyasu Iwasaki
    • 10
  • Nobuhiko Ban
    • 11
  • Michiaki Kai
    • 12
  • Christopher H. Clement
    • 13
  • Simon Bouffler
    • 14
  • Hideki Toma
    • 15
  • Nobuyuki Hamada
    • 13
  1. 1.Institute of Radiation ProtectionHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Department of Radiation Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  3. 3.Radiation Effects Research Foundation (RERF)Hiroshima CityJapan
  4. 4.Southern Urals Biophysics Institute (SUBI)OzyorskRussian Federation
  5. 5.Federal Office for Radiation ProtectionOberschleissheimGermany
  6. 6.Fukushima Medical UniversityFukushimaJapan
  7. 7.Department of Epidemiology and Preventive MedicineKagoshima University Graduate School of Medical and Dental SciencesKagoshima CityJapan
  8. 8.Institute for Environmental SciencesRokkashoJapan
  9. 9.Department of Radiation Medical Sciences, Atomic Bomb Disease InstituteNagasaki UniversityNagasakiJapan
  10. 10.Radiation Safety Research Center, Nuclear Technology Research LaboratoryCentral Research Institute of Electric Power Industry (CRIEPI)TokyoJapan
  11. 11.Faculty of NursingTokyo Healthcare UniversityTokyoJapan
  12. 12.Department of Environmental Health ScienceOita University of Nursing and Health SciencesOitaJapan
  13. 13.International Commission on Radiological Protection (ICRP)OttawaCanada
  14. 14.Centre for Radiation, Chemical and Environmental HazardsPublic Health England (PHE)Chilton, DidcotUK
  15. 15.JAPAN NUS Co., Ltd. (JANUS)TokyoJapan

Personalised recommendations