Radiation and Environmental Biophysics

, Volume 54, Issue 4, pp 403–411 | Cite as

Absolute quantification of acetylation and phosphorylation of the histone variant H2AX upon ionizing radiation reveals distinct cellular responses in two cancer cell lines

  • Shun Matsuda
  • Kanji Furuya
  • Masae Ikura
  • Tomonari Matsuda
  • Tsuyoshi IkuraEmail author
Original Paper


Histone modifications change upon the cellular response to ionizing radiation, and their cellular amounts could reflect the DNA damage response activity. We previously reported a sensitive and reliable method for the absolute quantification of γH2AX within cells, using liquid chromatography–tandem mass spectrometry (LC/MS/MS). The technique has broad adaptability to a variety of biological systems and can quantitate different modifications of histones. In this study, we applied it to quantitate the levels of γH2AX and K5-acetylated H2AX, and to compare the radiation responses between two cancer cell lines: HeLa and U-2 OS. The two cell lines have distinct properties in terms of their H2AX modifications. HeLa cells have relatively high γH2AX (3.1 %) against the total H2AX even in un-irradiated cells, while U-2 OS cells have an essentially undetectable level (nearly 0 %) of γH2AX. In contrast, the amounts of acetylated histones are lower in HeLa cells (9.3 %) and higher in U-2 OS cells (24.2 %) under un-irradiated conditions. Furthermore, after ionizing radiation exposure, the time-dependent increases and decreases in the amounts of histone modifications differed between the two cell lines, especially at the early time points. These results suggest that each biological system has distinct kinase/phosphatase and/or acetylase/deacetylase activities. In conclusion, for the first time, we have succeeded in simultaneously monitoring the absolute amounts of phosphorylated and acetylated cellular H2AX after ionizing radiation exposure. This multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems.


γH2AX Multiple reaction monitoring/selected reaction monitoring (MRM/SRM) Absolute quantification DNA damage Acetylation Phosphorylation 



This study was supported by KAKENHI (23221006) from the Japan Society for the Promotion of Science (S.M. and T.M.) and Grants-in-Aid for Scientific Research on Innovative Areas (22131001) (K.F. and T.I.).

Supplementary material

411_2015_608_MOESM1_ESM.docx (355 kb)
Supplementary material 1 (DOCX 355 kb)


  1. Ando M, Yoshikawa K, Iwase Y, Ishiura S (2014) Usefulness of monitoring gamma-H2AX and cell cycle arrest in HepG2 cells for estimating genotoxicity using a high-content analysis system. J Biomol Screen 19:1246–1254. doi: 10.1177/1087057114541147 CrossRefGoogle Scholar
  2. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467. doi: 10.1074/jbc.C100466200 CrossRefGoogle Scholar
  3. Cha H, Lowe JM, Li H, Lee JS, Belova GI, Bulavin DV, Fornace AJ Jr (2010) Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res 70:4112–4122. doi: 10.1158/0008-5472.CAN-09-4244 CrossRefGoogle Scholar
  4. Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J (2005) Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 20:801–809. doi: 10.1016/j.molcel.2005.10.003 CrossRefGoogle Scholar
  5. Douglas P, Zhong J, Ye R, Moorhead GB, Xu X, Lees-Miller SP (2010) Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol Cell Biol 30:1368–1381. doi: 10.1128/MCB.00741-09 CrossRefGoogle Scholar
  6. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913. doi: 10.1038/nature03485 CrossRefADSGoogle Scholar
  7. Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, Pandita TK (2013) Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res 179:383–392. doi: 10.1667/RR3308.2 CrossRefGoogle Scholar
  8. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27:7028–7040. doi: 10.1128/MCB.00579-07 CrossRefGoogle Scholar
  9. Kao J, Milano MT, Javaheri A, Garofalo MC, Chmura SJ, Weichselbaum RR, Kron SJ (2006) Gamma-H2AX as a therapeutic target for improving the efficacy of radiation therapy. Curr Cancer Drug Targets 6:197–205CrossRefGoogle Scholar
  10. Khoury L, Zalko D, Audebert M (2013) Validation of high-throughput genotoxicity assay screening using gammaH2AX in-cell western assay on HepG2 cells. Environ Mol Mutagen 54:737–746. doi: 10.1002/em.21817 CrossRefGoogle Scholar
  11. Macurek L, Lindqvist A, Voets O, Kool J, Vos HR, Medema RH (2010) Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition. Oncogene 29:2281–2291. doi: 10.1038/onc.2009.501 CrossRefGoogle Scholar
  12. Matsuda S, Ikura T, Matsuda T (2015) Absolute quantification of gammaH2AX using liquid chromatography-triple quadrupole tandem mass spectrometry. Anal Bioanal Chem. doi: 10.1007/s00216-015-8725-z zbMATHGoogle Scholar
  13. Moon SH, Nguyen TA, Darlington Y, Lu X, Donehower LA (2010) Dephosphorylation of gamma-H2AX by WIP1: an important homeostatic regulatory event in DNA repair and cell cycle control. Cell Cycle 9:2092–2096CrossRefGoogle Scholar
  14. Padovani L, Caporossi D, Tedeschi B, Vernole P, Nicoletti B, Mauro F (1993) Cytogenetic study in lymphocytes from children exposed to ionizing radiation after the Chernobyl accident. Mutat Res 319:55–60CrossRefGoogle Scholar
  15. Podhorecka M, Skladanowski A, Bozko P (2010) H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids. doi: 10.4061/2010/920161 Google Scholar
  16. Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y (2010) Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 16:4532–4542. doi: 10.1158/1078-0432.CCR-10-0523 CrossRefGoogle Scholar
  17. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916CrossRefGoogle Scholar
  18. Sanchez-Flores M, Pasaro E, Bonassi S, Laffon B, Valdiglesias V (2015) GammaH2ax assay as DNA damage biomarker for human population studies: defining experimental conditions. Toxicol Sci. doi: 10.1093/toxsci/kfv011 Google Scholar
  19. Sedelnikova OA, Bonner WM (2006) GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle 5:2909–2913CrossRefGoogle Scholar
  20. Smart DJ, Ahmedi KP, Harvey JS, Lynch AM (2011) Genotoxicity screening via the gammaH2AX by flow assay. Mutat Res 715:25–31. doi: 10.1016/j.mrfmmm.2011.07.001 CrossRefGoogle Scholar
  21. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396CrossRefGoogle Scholar
  22. Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279:2273–2280. doi: 10.1074/jbc.M310030200 CrossRefGoogle Scholar
  23. Tsamou M, Jennen DG, Claessen SM, Magkoufopoulou C, Kleinjans JC, van Delft JH (2012) Performance of in vitro gammaH2AX assay in HepG2 cells to predict in vivo genotoxicity. Mutagenesis 27:645–652. doi: 10.1093/mutage/ges030 CrossRefGoogle Scholar
  24. Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276:47759–47762. doi: 10.1074/jbc.C100569200 CrossRefGoogle Scholar
  25. Watters GP, Smart DJ, Harvey JS, Austin CA (2009) H2AX phosphorylation as a genotoxicity endpoint. Mutat Res 679:50–58. doi: 10.1016/j.mrgentox.2009.07.007 CrossRefGoogle Scholar
  26. Wu J, Clingen PH, Spanswick VJ, Mellinas-Gomez M, Meyer T, Puzanov I, Jodrell D, Hochhauser D, Hartley JA (2013) Gamma-H2AX foci formation as a pharmacodynamic marker of DNA damage produced by DNA cross-linking agents: results from 2 phase I clinical trials of SJG-136 (SG2000). Clin Cancer Res 19:721–730. doi: 10.1158/1078-0432.CCR-12-2529 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shun Matsuda
    • 1
  • Kanji Furuya
    • 2
  • Masae Ikura
    • 3
  • Tomonari Matsuda
    • 1
  • Tsuyoshi Ikura
    • 3
    Email author
  1. 1.Laboratory of Environment Quality Management, Research Center for Environmental Quality ManagementKyoto UniversityOtsuJapan
  2. 2.Laboratory of Cell Cycle Response, Department of Mutagenesis, Radiation Biology CenterKyoto UniversityKyotoJapan
  3. 3.Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology CenterKyoto UniversityKyotoJapan

Personalised recommendations