Radiation and Environmental Biophysics

, Volume 54, Issue 1, pp 71–79 | Cite as

Investigation of EBT2 and EBT3 films for proton dosimetry in the 4–20 MeV energy range

  • S. ReinhardtEmail author
  • M. Würl
  • C. Greubel
  • N. Humble
  • J. J. Wilkens
  • M. Hillbrand
  • A. Mairani
  • W. Assmann
  • K. Parodi
Original Paper


Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4–20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose–response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth–dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.


Gafchromic EBT Proton Laser ion acceleration  Dosimetry 



The authors would like to thank Günther Dollinger and his group from the Universität der Bundeswehr, München, Germany, for operation of the SNAKE beam line at the MLL Tandem accelerator. This work was funded by the DFG Cluster of Excellence ‘Munich-Centre for Advanced Photonics’(MAP).


  1. Andreo P, Burns D, Hohlfeld K, Huq M, Kanai T, Laitano F, Smyth V (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA Technical Report Series IAEA, ViennaGoogle Scholar
  2. Angellier G, Gautier M, Herault J (2011) Radiochromic EBT2 film dosimetry for low-energy protontherapy. Med Phys 38(11):6171–6177. doi: 10.1118/1.3654161 CrossRefGoogle Scholar
  3. Arjomandy B, Tailor R, Anand A, Sahoo N, Gillin M, Prado K, Vicic M (2010) Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Med Phys 37(5):1942–1947CrossRefGoogle Scholar
  4. Arjomandy B, Tailor R, Zhao L, Devic S (2012) EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities. Med Phys 39(2):912–921. doi: 10.1118/1.3678989 CrossRefGoogle Scholar
  5. Battistoni G, Muraro S, Sala PR, Cerutti F, Ferrari A, Roesler S, Fasso A, Ranft J (2007) The FLUKA code: description and benchmarking. In: Albrow M, Raja R (eds) Proceedings of the hadronic shower simulation workshop 2006, Fermilab 6–8 Sept 2006, AIP conference proceeding, vol 896, pp 31–49Google Scholar
  6. Bin J, Allinger K, Assmann W, Dollinger G, Drexler G, Friedl A, Habs D, Hilz P, Hoerlein R, Humble N, Karsch S, Khrennikov K, Kiefer D, Krausz F, Ma W, Michalski D, Molls M, Raith S, Reinhardt S, Röper B, Schmid T, Tajima T, Wenz J, Zlobinskaya O, Schreiber J, Wilkens J (2012) A laser-driven nanosecond proton source for radiobiological studies. Appl Phys Lett 101(24):243701. doi: 10.1063/1.4769372 CrossRefADSGoogle Scholar
  7. Borca V, Pasquino M, Russo G, Grosso P, Cante D, Sciacero P, Girelli G, La Porta M, Tofani S (2013) Dosimetric characterization and use of Gafchromic EBT3 film for IMRT dose verification. J Appl Clin Med Phys 14(2):158–171Google Scholar
  8. Brun R, Rademakers F (1997) ROOT—an Object oriented data analysis framework. Nucl Instrum Methods Phys Res A 389:81–86CrossRefADSGoogle Scholar
  9. Datzmann G, Dollinger G, Goeden C, Hauptner A, Körner H, Reichart P, Schmelmer O (2001) The Munich microprobe SNAKE: first results using 20 MeV protons and 90 MeV sulfur ions. Nucl Instrum Methods Phys Res B 181:20–26. doi: 10.1016/S0168-583x(01)00549-3 CrossRefADSGoogle Scholar
  10. Devic S, Seuntjens J, Hegyi G, Podgorsak E, Soares C, Kirov A, Ali I, Williamson J, Elizondo A (2004) Dosimetric properties of improved GafChromic films for seven different digitizers. Med Phys 31(9):2392–2401. doi: 10.1118/1.1776691 CrossRefGoogle Scholar
  11. Devic S, Seuntjens J, Sham E, Podgorsak E, Schmidtlein C, Kirov A, Soares C (2005) Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 32(7):2245–2253. doi: 10.1118/1.1929253 CrossRefGoogle Scholar
  12. Devic S, Aldelaijan S, Mohammed H, Tomic N, Liang L, DeBlois F, Seuntjens J (2010) Absorption spectra time evolution of EBT-2 model GAFCHROMIC (TM) film. Med Phys 37(5):2207–2214. doi: 10.1118/1.3378675 CrossRefGoogle Scholar
  13. Doria D, Kakolee K, Kar S, Litt S, Fiorini F, Ahmed H, Green S, Jeynes J, Kavanagh J, Kirby D, Kirkby K, Lewis C, Merchant M, Nersisyan G, Prasad R, Prise K, Schettino G, Zepf M, Borghesi M (2012) Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Adv 2:011209CrossRefADSGoogle Scholar
  14. Ferrari A, Sala P, Fasso A, Ranft J (2005) FLUKA: a multi-particle transport code. Tech. rep., CERN, CERN-2005-10, INFN/TC\_05/11, SLAC-R-773Google Scholar
  15. Fiorini F, Kirby D, Borghesi M, Doria D, Jeynes J, Kakolee K, Kar S, Litt S, Krikby K, Merchant M, Green S (2011) Dosimetry and spectral analysis of radiobiological experiment using laser-driven proton beams. Phys Med Biol 56:6969–6982CrossRefGoogle Scholar
  16. Fiorini F, Kirby D, Thompson J, Green S, Parker D, Jones B, Hill M (2014) Under-response correction for EBT3 films in the presence of proton spread out Bragg peaks. Phys Med. doi: 10.1016/j.ejmp.2013.12.006 Google Scholar
  17. Grassberger C, Paganetti H (2011) Elevated LET components in clinical proton beams. Phys Med Biol 56:6677–6691CrossRefGoogle Scholar
  18. Hartmann B, Martisikova M, Jäkel O (2010) Homogeneity of Gafchromic EBT2 film. Med Phys 37(4):1753–1756CrossRefGoogle Scholar
  19. Hupe O, Brunzendorf J (2006) A novel method of radiochromic film dosimetry using a color scanner. Med Phys 33(11):4085–4094. doi: 10.1118/1.2357019 CrossRefGoogle Scholar
  20. ICRU (1970) ICRU Report 16 linear energy transfer. Tech. rep, ICRUGoogle Scholar
  21. ICRU (1993) ICRU Report 49: stopping powers and ranges for protons and alpha particles. Tech. rep, ICRUGoogle Scholar
  22. Jirasek A, Duzenli C (2002) Relative effectiveness of polyacrylamide gel dosimeters applied to proton beams: Fourier transform, Raman observations and track structure calculations. Med Phys 29(4):569–577CrossRefGoogle Scholar
  23. Karsch L, Beyreuther E, Burris-Mog T, Kraft S, Richter C, Zeil K, Pawelke J (2012) Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Med Phys 39(5):2447–2455. doi: 10.1118/1.3700400 CrossRefGoogle Scholar
  24. Kirby D, Green S, Palmans H, Hugtenburg R, Wojnecki C, Parker D (2010) LET dependence of GafChromic film and an ion chamber in low-energy proton dosimetry. Phys Med Biol 55:417–433CrossRefGoogle Scholar
  25. Kraft S, Richter C, Zeil K, Baumann M, Beyreuther E, Bock S, Bussmann M, Cowan T, Dammene Y, Enghardt W, Helbig U, Karsch L, Kluge T, Laschinsky L, Lessmann E, Metzkes J, Naumburger D, Sauerbrey R, Schurer M, Sobiella M, Woithe J, Schramm U, Pawelke J (2010) Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J Phys 12(085):003. doi: 10.1088/1367-2630/12/8/085003 Google Scholar
  26. Lewis D, Micke A, Yu X, Chan M (2012) An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys 39(10):6339–6350. doi: 10.1118/1.4754797 CrossRefGoogle Scholar
  27. Lindsay P, Rink A, Ruschin M, Jaffray D (2010) Investigation of energy dependence of EBT and EBT-2 Gafchromic film. Med Phys 37(2):571–576CrossRefGoogle Scholar
  28. Martisikova M, Jäkel O (2010a) Dosimetric properties of Gafchromic EBT films in monoenergetic medical ion beams. Phys Med Biol 55:3741–3751CrossRefGoogle Scholar
  29. Martisikova M, Jäkel O (2010b) Dosimetric properties of Gafchromic(R) EBT films in medical carbon ion beams. Phys Med Biol 55(18):5557–5567. doi: 10.1088/0031-9155/55/18/019 CrossRefGoogle Scholar
  30. Paganetti H (2002) Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 47:747–764CrossRefGoogle Scholar
  31. Piermattei A, Miceli R, Azario L, Fidanzio A, delle Canne S, De Angelis C, Onori S, Pacilio M, Petetti E, Raffaele L, Sabini M (2000) Radiochromic film dosimetry of a low energy proton beam. Med Phys 27(7):1655–1660. doi: 10.1118/1.599032 CrossRefGoogle Scholar
  32. Reinhardt S, Hillbrand M, Wilkens J, Assmann W (2012) Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams. Med Phys 39(8):5257–5262. doi: 10.1118/1.4737890 CrossRefGoogle Scholar
  33. Vatnitsky S (1997) Radiochromic film dosimetry for clinical proton beams. Appl Radiat Isot 48(5):643–651. doi: 10.1016/S0969-8043(97)00342-4 CrossRefGoogle Scholar
  34. Wilkens J, Oelfke U (2003) Analytical linear energy transfer calculations for proton therapy. Med Phys 30(5):806–815CrossRefGoogle Scholar
  35. Zeidan O, Stephenson S, Meeks S, Wagner T, Willoughby T, Kupelian P, Langen K (2006) Characterization and use of EBT radiochromic film for IMRT dose verification. Med Phys 33(11):4064–4072. doi: 10.1118/1.2360012 CrossRefGoogle Scholar
  36. Zhao L, Das I (2010) Gafchromic EBT film dosimetry in proton beams. Phys Med Biol 55:N291–N301CrossRefADSGoogle Scholar
  37. Ziegler J, Ziegler M, Biersack J (2010) SRIM—the stopping and range of ions in matter. Nucl Instrum Methods Phys Res B 268(11–12):1818–1823. doi: 10.1016/j.nimb.2010.02.091 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Reinhardt
    • 1
    Email author
  • M. Würl
    • 1
  • C. Greubel
    • 2
  • N. Humble
    • 3
  • J. J. Wilkens
    • 3
  • M. Hillbrand
    • 4
  • A. Mairani
    • 5
  • W. Assmann
    • 1
  • K. Parodi
    • 1
  1. 1.Department of Medical Physics, Faculty of PhysicsLudwig-Maximilians Universität MünchenGarchingGermany
  2. 2.Institut für Angewandte Physik und Messtechnik (LRT2)Universität der Bundeswehr MünchenNeubibergGermany
  3. 3.Department of Radiation OncologyTechnische Universität MünchenMunichGermany
  4. 4.Rinecker Proton Therapy CenterMunichGermany
  5. 5.Medical Physics Unit CNAO FoundationPaviaItaly

Personalised recommendations