Radiation and Environmental Biophysics

, Volume 54, Issue 1, pp 1–12 | Cite as

Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study

  • L. Krille
  • S. Dreger
  • R. Schindel
  • T. Albrecht
  • M. Asmussen
  • J. Barkhausen
  • J. D. Berthold
  • A. Chavan
  • C. Claussen
  • M. Forsting
  • E. A. L. Gianicolo
  • K. Jablonka
  • A. Jahnen
  • M. Langer
  • M. Laniado
  • J. Lotz
  • H. J. Mentzel
  • A. Queißer-Wahrendorf
  • O. Rompel
  • I. Schlick
  • K. Schneider
  • M. Schumacher
  • M. Seidenbusch
  • C. Spix
  • B. Spors
  • G. Staatz
  • T. Vogl
  • J. Wagner
  • G. Weisser
  • H. Zeeb
  • M. Blettner
Original Paper

Abstract

The aim of this cohort study was to assess the risk of developing cancer, specifically leukaemia, tumours of the central nervous system and lymphoma, before the age of 15 years in children previously exposed to computed tomography (CT) in Germany. Data for children with at least one CT between 1980 and 2010 were abstracted from 20 hospitals. Cancer cases occurring between 1980 and 2010 were identified by stochastic linkage with the German Childhood Cancer Registry (GCCR). For all cases and a sample of non-cases, radiology reports were reviewed to assess the underlying medical conditions at time of the CT. Cases were only included if diagnosis occurred at least 2 years after the first CT and no signs of cancer were recorded in the radiology reports. Standardised incidence ratios (SIR) using incidence rates from the general population were estimated. The cohort included information on 71,073 CT examinations in 44,584 children contributing 161,407 person-years at risk with 46 cases initially identified through linkage with the GCCR. Seven cases had to be excluded due to signs possibly suggestive of cancer at the time of first CT. Overall, more cancer cases were observed (O) than expected (E), but this was mainly driven by unexpected and possibly biased results for lymphomas. For leukaemia, the SIR (SIR = O/E) was 1.72 (95 % CI 0.89–3.01, O = 12), and for CNS tumours, the SIR was 1.35 (95 % CI 0.54–2.78, O = 7). Despite careful examination of the medical information, confounding by indication or reverse causation cannot be ruled out completely and may explain parts of the excess. Furthermore, the CT exposure may have been underestimated as only data from the participating clinics were available. This should be taken into account when interpreting risk estimates.

Keywords

Childhood cancer Standardised incidence ratio (SIR) Ionising radiation Computed tomography scans (CT) Cohort study 

Notes

Acknowledgments

The authors thank S Blomemkamp, C Bremensdorfer, J Hermen, I Jung, DM R Lange, C Lehmann, G Miritz, Dr. A Schiefer, Dr. G Stolz and K Taylor for their valuable technical and intellectual support during the conduct of the study. The study was funded by the German Federal Ministry of Education and Research under grant numbers 02NUK016A, 02NUK016B and 02NUK016CX. Complementary funding was received from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement Number 269912. The funding bodies had no role in the study design, data analysis or reporting.

References

  1. BfS (Bundesamt für Strahlenschutz) (2013) Umweltradioaktivität und Strahlenbelastung im Jahr 2011: Unterrichtung durch die Bundesregierung. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Bonn. http://nbn-resolving.de/urn:nbn:de:0221-2013060410695
  2. Brasme J-F, Morfouace M, Grill J, Martinot A, Amalberti R, Bons-Letouzey C, Chalumeau M (2012) Delays in diagnosis of paediatric cancers: a systematic review and comparison with expert testimony in lawsuits. Lancet Oncol 13(10):e445–e459CrossRefGoogle Scholar
  3. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176(2):289–296CrossRefGoogle Scholar
  4. Breslow E, Day E (1987) Statistical methods in cancer research—Volume II—the design and analysis of cohort studies. IARC, LyonGoogle Scholar
  5. Daumke P, Schulz S, Müller ML, Dzeyk W, Prinzen L, Pacheco EJ, Cancian PS, Nohama P, Markó K (2010) Subword-based semantic retrieval of clinical and bibliographic documents. Methods Inf Med 49(2):141–147CrossRefGoogle Scholar
  6. DESTATIS (Statistisches Bundesamt) (2012) Periodensterbetafeln für Deutschland—Allgemeine Sterbetafeln, abgekürzte Sterbetafeln und Sterbetafeln. Statistisches Bundesamt Wiesbaden. https://www.destatis.de/DE/Publikationen/Thematisch/Bevoelkerung/Bevoelkerungsbewegung/Periodensterbetafeln.html
  7. Goske MJ, Applegate KE, Boylan J, Butler PF, Callahan MJ, Coley BD, Farley S, Frush DP, Hernanz-Schulman M, Jaramillo D, Johnson ND, Kaste SC, Morrison G, Strauss KJ, Tuggle N (2008) The “Image Gently” campaign: increasing CT radiation dose awareness through a national education and awareness program. Pediatr Radiol 38(3):265–269CrossRefGoogle Scholar
  8. Hammer GP, Seidenbusch MC, Schneider K, Regulla DF, Zeeb H, Spix C, Blettner M (2009) A cohort study of childhood cancer incidence after postnatal diagnostic X-ray exposure. Radiat Res 171(4):504–512CrossRefGoogle Scholar
  9. Hauptmann M, Meulepas JM (2012) CT scans in childhood and risk of leukaemia and brain tumours. Lancet 380(9855):1736–1737CrossRefGoogle Scholar
  10. Hsu WL, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K (2013) The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950-2001. Radiat Res 179(3):361–382CrossRefGoogle Scholar
  11. Huang WY, Muo CH, Lin CY, Jen YM, Yang MH, Lin JC, Sung FC, Kao CH (2014) Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. Br J Cancer 110(9):2354–2360CrossRefGoogle Scholar
  12. IARC (1999) Ionizing radiation, part 1: X-and gamma (g)-radiation, and neutrons. IARC, LyonGoogle Scholar
  13. Journy N, Rehel JL, Le Pointe HD, Lee C, Brisse H, Chateil JF, Caer-Lorho S, Laurier D, Bernier MO (2014) Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. Br J Cancer. doi: 10.1038/bjc.2014.526 Google Scholar
  14. Kaatsch P, Spix C (2011) German childhood cancer registry—Annual Report 2010 (1980–2010) GCCR, MainzGoogle Scholar
  15. Kim KP, de González AB, Pearce MS, Salotti JA, Parker L, McHugh K, Craft AW, Lee C (2012) Development of a database of organ doses for paediatric and young adult Ct scans in the United Kingdom. Radiat Prot Dosim 150(4):415–426CrossRefGoogle Scholar
  16. Krille L, Jahnen A, Mildenberger P, Schneider K, Weisser G, Zeeb H, Blettner M (2011) Computed tomography in children: multicenter cohort study design for the evaluation of cancer risk. Eur J Epidemiol 26(3):249–250CrossRefGoogle Scholar
  17. Krille L, Zeeb H, Jahnen A, Mildenberger P, Seidenbusch M, Schneider K, Weisser G, Hammer G, Scholz P, Blettner M (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51(2):103–111CrossRefGoogle Scholar
  18. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J 346:f2360CrossRefGoogle Scholar
  19. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707CrossRefGoogle Scholar
  20. NCRP (National Council on Radiation Protection & Measurements) (2009) Ionizing radiation exposure of the population of the United States—NCRP REPORT No. 160 NCRP Publications, BethesdaGoogle Scholar
  21. Pearce MS, Salotti J, Little M, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, de González AB (2012a) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 6736(12):1–7Google Scholar
  22. Pearce MS, Salotti J, Howe NL, McHugh K, Kim KP, Lee C, Craft AW, de Gonzaléz AB, Parker L (2012b) CT scans in young people in Great Britain: temporal and descriptive patterns, 1993–2002. Radiol Res Pract 2012:594278Google Scholar
  23. Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A, Kamada N, Dohy H, Matsuo T, Matsuo T (1994) Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 137(2 Suppl):S68–S97CrossRefGoogle Scholar
  24. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64CrossRefGoogle Scholar
  25. Schnell R, Bachteler T, Bender S (2004) A toolbox for record linkage. Austrian J Stat 33(1):125–133Google Scholar
  26. Shah NB, Platt SL (2008) ALARA: is there a cause for alarm? Reducing radiation risks from computed tomography scanning in children. Curr Opin Pediatr 20(3):243–247CrossRefGoogle Scholar
  27. Stein SC, Hurst RW, Sonnad SS (2008) Meta-analysis of cranial CT scans in children. A mathematical model to predict radiation-induced tumors. Pediatr Neurosurg 44(6):448–457CrossRefGoogle Scholar
  28. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P (2005) International classification of childhood cancer. Cancer 103(7):1457–1467 (third edition)CrossRefGoogle Scholar
  29. Thierry-Chef I, Dabin J, Friberg E, Hermen J, Istad TS, Jahnen A, Krille L, Lee C, Maccia C, Nordenskjöld A, Olerud HM, Rani K, Rehel JL, Simon SL, Struelens L, Kesminiene A (2013) Assessing organ doses from paediatric CT scans: a novel approach for an epidemiology study (the EPI-CT study). Int J Environ Res Public Health 10(2):717–728CrossRefGoogle Scholar
  30. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2013) Sources, effects and risks of ionizing radiation, vol II. UNSCEAR, New York, p 265Google Scholar
  31. Walsh L, Shore R, Auvinen A, Jung T, Wakeford R (2013) Re: cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J 346:f2360CrossRefGoogle Scholar
  32. Walsh L, Shore R, Auvinen A, Jung T, Wakeford R (2014) Risks from CT scans—what do recent studies tell us? J Radiol Prot 34(1):E1. doi: 10.1088/0952-4746/34/1/E1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Krille
    • 1
    • 2
  • S. Dreger
    • 3
  • R. Schindel
    • 1
  • T. Albrecht
    • 4
  • M. Asmussen
    • 5
  • J. Barkhausen
    • 6
  • J. D. Berthold
    • 7
  • A. Chavan
    • 8
  • C. Claussen
    • 9
  • M. Forsting
    • 10
  • E. A. L. Gianicolo
    • 1
    • 11
  • K. Jablonka
    • 12
  • A. Jahnen
    • 13
  • M. Langer
    • 14
  • M. Laniado
    • 15
  • J. Lotz
    • 16
  • H. J. Mentzel
    • 17
  • A. Queißer-Wahrendorf
    • 18
  • O. Rompel
    • 19
  • I. Schlick
    • 20
  • K. Schneider
    • 21
  • M. Schumacher
    • 22
  • M. Seidenbusch
    • 21
  • C. Spix
    • 23
  • B. Spors
    • 24
  • G. Staatz
    • 25
  • T. Vogl
    • 26
  • J. Wagner
    • 27
  • G. Weisser
    • 28
  • H. Zeeb
    • 3
  • M. Blettner
    • 1
  1. 1.Institute of Medical Biostatistics, Epidemiology and InformaticsUniversity Medical Center MainzMainzGermany
  2. 2.International Agency for Research on CancerLyonFrance
  3. 3.Leibniz - Institute for Prevention Research and Epidemiology – BIPS, Research Focus Health Sciences BremenUniversity of BremenBremenGermany
  4. 4.Institut für Radiologie und Interventionelle TherapieVivantes, Klinikum NeuköllnBerlinGermany
  5. 5.Städtisches Klinikum KarlsruheZentralinstitut für Bildgebende DiagnostikKarlsruheGermany
  6. 6.Klinik für Radiologie und Nuklearmedizin, Campus LübeckUniversitätsklinikum Schleswig HolsteinLübeckGermany
  7. 7.Institut für Diagnostische und Interventionelle RadiologieMedizinische Hochschule HannoverHannoverGermany
  8. 8.Institut für Diagnostische & Interventionelle RadiologieKlinikum Oldenburg GmbHOldenburgGermany
  9. 9.Abt. für Diagnostische und Interventionelle RadiologieUniversitätsklinikum TübingenTübingenGermany
  10. 10.Institut für Diagnostische und Interventionelle Radiologie und NeuroradiologieUniversitätsklinikum EssenEssenGermany
  11. 11.Institute of Clinical PhysiologyNational Research CouncilLecceItaly
  12. 12.Klinik für Radiologische Diagnostik und NuklearmedizinKlinikum Bremen-MitteBremenGermany
  13. 13.Centre de Recherche Public Henri TudorLuxembourgLuxembourg
  14. 14.Klinik für RadiologieUniversitätsklinikum FreiburgFreiburgGermany
  15. 15.Institut und Poliklinik für Radiologische DiagnostikUniversitätsklinikum Carl Gustav Carus DresdenDresdenGermany
  16. 16.Institut für Diagnostische und Interventionelle RadiologieUniversitätsmedizin GöttingenGöttingenGermany
  17. 17.Institut für Diagnostische und Interventionelle Radiologie, Sektion KinderradiologieUniversitätsklinikum JenaJenaGermany
  18. 18.Zentrum für Kinder- und JugendmedizinUniversitätsmedizin MainzMainzGermany
  19. 19.Radiologisches InstitutUniversitätsklinikum ErlangenErlangenGermany
  20. 20.Institut für Radiologie und NeuroradiologieKlinikum Nürnberg SüdNurembergGermany
  21. 21.Klinikum der Universität München, Dr. von Haunersches KinderspitalInstitut für Klinische RadiologieMunichGermany
  22. 22.Klinik für Neuroradiologie, NeurozentrumUniversitätsklinik FreiburgFreiburgGermany
  23. 23.German Childhood Cancer RegistryUniversity Medical Center MainzMainzGermany
  24. 24.Kinderradiologie, Standort Campus Virchow KlinikumCharité - Universitätsmedizin BerlinBerlinGermany
  25. 25.Klinik und Poliklinik für diagnostische und interventionelle Radiologie, Sektion KinderradiologieUniversitätsmedizin MainzMainzGermany
  26. 26.Institut für Diagnostische und Interventionelle RadiologieKlinikum der Johann Wolfgang Goethe-Universität Frankfurt/MainFrankfurtGermany
  27. 27.Institut für Radiologie und Interventionelle TherapieVivantes, Klinikum im FriedrichshainBerlinGermany
  28. 28.Institut für Klinische Radiologie und NuklearmedizinUniversitätsklinikum MannheimMannheimGermany

Personalised recommendations