Radiation and Environmental Biophysics

, Volume 53, Issue 1, pp 39–54 | Cite as

Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach

  • Neige Journy
  • Sophie Ancelet
  • Jean-Luc Rehel
  • Myriam Mezzarobba
  • Bernard Aubert
  • Dominique Laurier
  • Marie-Odile Bernier
Original Paper


The potential adverse effects associated with exposure to ionizing radiation from computed tomography (CT) in pediatrics must be characterized in relation to their expected clinical benefits. Additional epidemiological data are, however, still awaited for providing a lifelong overview of potential cancer risks. This paper gives predictions of potential lifetime risks of cancer incidence that would be induced by CT examinations during childhood in French routine practices in pediatrics. Organ doses were estimated from standard radiological protocols in 15 hospitals. Excess risks of leukemia, brain/central nervous system, breast and thyroid cancers were predicted from dose–response models estimated in the Japanese atomic bomb survivors’ dataset and studies of medical exposures. Uncertainty in predictions was quantified using Monte Carlo simulations. This approach predicts that 100,000 skull/brain scans in 5-year-old children would result in eight (90 % uncertainty interval (UI) 1–55) brain/CNS cancers and four (90 % UI 1–14) cases of leukemia and that 100,000 chest scans would lead to 31 (90 % UI 9–101) thyroid cancers, 55 (90 % UI 20–158) breast cancers, and one (90 % UI <0.1–4) leukemia case (all in excess of risks without exposure). Compared to background risks, radiation-induced risks would be low for individuals throughout life, but relative risks would be highest in the first decades of life. Heterogeneity in the radiological protocols across the hospitals implies that 5–10 % of CT examinations would be related to risks 1.4–3.6 times higher than those for the median doses. Overall excess relative risks in exposed populations would be 1–10 % depending on the site of cancer and the duration of follow-up. The results emphasize the potential risks of cancer specifically from standard CT examinations in pediatrics and underline the necessity of optimization of radiological protocols.


Ionizing radiation Low doses Computed tomography Pediatric Cancer Quantitative risk assessment Uncertainty analysis 



We are particularly grateful to the radiologists working in the participating hospitals (France) who provided us with information about the radiological protocols used in their department: Pr N Boutry (CHU de Lille), Pr F Brunelle (CHU Necker-Enfants-Malades–Paris), Pr JF Chateil (CHU Pellegrin–Bordeaux), Pr E Dion (CHU Louis Mourier – Colombes), Pr H Ducou Le Pointe (CHU Armand Trousseau – Paris), Dr S Franchi (CHU de Bicêtre), Dr MF Galloy (CHU de Nancy), Pr JM Garcier and Dr J Guersen (CHU de Clermont-Ferrand), Pr G Khalifa (CHU Saint-Vincent de Paul – Paris), Dr D Loisel (CHU d’Angers), Pr D Musset (CHU Antoine Béclère – Clamart), Pr D Pariente (CHU de Bicêtre), Pr P Petit (CHU de Marseille), Dr E Schmitt (CHU de Nancy), Pr G Sebag (CHU Robert Debré – Paris), Pr D Sirinelli (CHU Clocheville – Tours), Dr J Vial (CHU de Toulouse). We also thank Olivier Laurent (IRSN, France) very much for helpful discussions on methods at early stages of the work. This report makes use of data obtained from the Radiation Effects Research Foundation (RERF) in Hiroshima, Japan. RERF is a private foundation funded equally by the Japanese Ministry of Health, Labour, and Welfare and the US Department of Energy through the US National Academy of Sciences. The data include information obtained from the Hiroshima City, Hiroshima Prefecture, Nagasaki City, and Nagasaki Prefecture Tumor Registries and the Hiroshima and Nagasaki Tissue Registries. The conclusions in this report are those of the authors and do not necessarily reflect the scientific judgment of RERF or its funding agencies. This work was funded by La Ligue contre le cancer (PRE09/MOB) and the French National Cancer Institute (INCa) (2011-1-PL-SHS-01-IRSN-1).

Supplementary material

411_2013_491_MOESM1_ESM.doc (301 kb)
Supplementary material 1 (DOC 238 kb)
411_2013_491_MOESM2_ESM.xls (36 kb)
Supplementary material 2 (XLS 36 kb)


  1. Adams MJ, Dozier A, Shore RE, Lipshultz SE, Schwartz RG, Constine LS, Pearson TA, Stovall M, Winters P, Fisher SG (2010) Breast cancer risk 55 + years after irradiation for an enlarged thymus and its implications for early childhood medical irradiation today. Cancer Epidemiol Biomarkers Prev 19(1):48–58CrossRefGoogle Scholar
  2. Baysson H, Etard C, Brisse HJ, Bernier MO (2012) Diagnostic radiation exposure in children and cancer risk: current knowledge and perspectives. Arch Pediatr 19(1):64–73CrossRefGoogle Scholar
  3. Belot A, Grosclaude P, Bossard N, Jougla E, Benhamou E, Delafosse P, Guizard AV, Molinie F, Danzon A, Bara S, Bouvier AM, Tretarre B, Binder-Foucard F, Colonna M, Daubisse L, Hedelin G, Launoy G, Le Stang N, Maynadie M, Monnereau A, Troussard X, Faivre J, Collignon A, Janoray I, Arveux P, Buemi A, Raverdy N, Schvartz C, Bovet M, Cherie-Challine L, Esteve J, Remontet L, Velten M (2008) Cancer incidence and mortality in France over the period 1980–2005. Rev Epidemiol Sante Publique 56(3):159–175CrossRefGoogle Scholar
  4. Bernier MO, Mezzarobba M, Maupu E, Caer-Lorho S, Brisse HJ, Laurier D, Brunelle F, Chatellier G (2012a) Role of French hospital claims databases from care units in epidemiological studies: the example of the “Cohorte Enfant Scanner” study. Rev Epidemiol Sante Publique 60(5):363–370CrossRefGoogle Scholar
  5. Bernier MO, Rehel JL, Brisse HJ, Wu-Zhou X, Caer-Lorho S, Jacob S, Chateil JF, Aubert B, Laurier D (2012b) Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol 85(1009):53–60CrossRefGoogle Scholar
  6. Berrington de Gonzalez A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351CrossRefGoogle Scholar
  7. Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2077CrossRefGoogle Scholar
  8. Berrington de Gonzalez A, Apostoaei JA, Veiga LH, Rajaraman P, Thomas BA, Owen Hoffman F, Gilbert E, Land C (2012) RadRAT: a radiation risk assessment tool for lifetime cancer risk projection. J Radiol Prot 32(3):205–222CrossRefGoogle Scholar
  9. Boice JD Jr, Preston D, Davis FG, Monson RR (1991) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 125(2):214–222CrossRefGoogle Scholar
  10. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284CrossRefGoogle Scholar
  11. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176(2):289–296CrossRefGoogle Scholar
  12. Brenner DJ, Shuryak I, Einstein AJ (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261(1):193–198CrossRefGoogle Scholar
  13. Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II–The design and analysis of cohort studies. IARC Sci Publ 82:1–406Google Scholar
  14. Cardis E, Hatch M (2011) The Chernobyl accident-an epidemiological perspective. Clin Oncol 23(4):251–260CrossRefGoogle Scholar
  15. Cardis E, Howe G, Ron E, Bebeshko V, Bogdanova T, Bouville A, Carr Z, Chumak V, Davis S, Demidchik Y, Drozdovitch V, Gentner N, Gudzenko N, Hatch M, Ivanov V, Jacob P, Kapitonova E, Kenigsberg Y, Kesminiene A, Kopecky KJ, Kryuchkov V, Loos A, Pinchera A, Reiners C, Repacholi M, Shibata Y, Shore RE, Thomas G, Tirmarche M, Yamashita S, Zvonova I (2006) Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot 26(2):127–140CrossRefGoogle Scholar
  16. Chodick G, Ronckers CM, Shalev V, Ron E (2007) Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children. Isr Med Assoc J 9(8):584–587Google Scholar
  17. Etard C, Sinno Tellier S, Aubert B (2010) [Exposure of the French population to ionizing radiation from medical diagnostic examinations in 2007] Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Institut de Veille Sanitaire (InVS). Accessed Jan, 31 2013
  18. Etard C, Sinno Tellier S, Empereur-Bissonnet P, Aubert B (2012) French population exposure to ionizing radiation from diagnostic medical procedures in 2007. Health Phys 102(6):670–679Google Scholar
  19. Furukawa K, Preston DL, Lonn S, Funamoto S, Yonehara S, Matsuo T, Egawa H, Tokuoka S, Ozasa K, Kasagi F, Kodama K, Mabuchi K (2010) Radiation and smoking effects on lung cancer incidence among atomic bomb survivors. Radiat Res 174(1):72–82CrossRefGoogle Scholar
  20. Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K (2013) Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer 132(5):1222–1226CrossRefGoogle Scholar
  21. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis (second ed). CRC/Chapman & Hall, Boca RatonGoogle Scholar
  22. Hammer GP, Seidenbusch MC, Schneider K, Regulla DF, Zeeb H, Spix C, Blettner M (2009) A cohort study of childhood cancer incidence after postnatal diagnostic X-ray exposure. Radiat Res 171(4):504–512CrossRefGoogle Scholar
  23. Howe GR, McLaughlin J (1996) Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivors study. Radiat Res 145(6):694–707CrossRefGoogle Scholar
  24. Hsu WL, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K (2013) The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res 179(3):361–382CrossRefGoogle Scholar
  25. Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. Am J Roentgenol 188(2):540–546CrossRefGoogle Scholar
  26. IARC (2012) International agency for research on cancer (IARC). IARC monographs volume 100D—a review of human carcinogens: Radiation. Lyon, FranceGoogle Scholar
  27. ICRP (2005) Low-dose extrapolation of radiation-related cancer risk. ICRP Publication 99. Ann ICRP 35(4)Google Scholar
  28. Karlsson P, Holmberg E, Lundell M, Mattsson A, Holm LE, Wallgren A (1998) Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma. Radiat Res 150(3):357–364CrossRefGoogle Scholar
  29. Kellerer AM, Nekolla EA, Walsh L (2001) On the conversion of solid cancer excess relative risk into lifetime attributable risk. Radiat Environ Biophys 40(4):249–257CrossRefGoogle Scholar
  30. Kocher DC, Apostoaei JA, Henshaw RW, Hoffman FO, Schubauer-Berigan MK, Stancescu DO, Thomas BA, Trabalka JR, Gilbert ES, Land CE (2008) Interactive radio epidemiological program (IREP): a web-based tool for estimating probability of causation/assigned share of radiogenic cancers. Health Phys 95(1):119–147CrossRefGoogle Scholar
  31. Krille L, Jahnen A, Mildenberger P, Schneider K, Weisser G, Zeeb H, Blettner M (2011) Computed tomography in children: multicenter cohort study design for the evaluation of cancer risk. Eur J Epidemiol 26(3):249–250CrossRefGoogle Scholar
  32. Krille L, Zeeb H, Jahnen A, Mildenberger P, Seidenbusch M, Schneider K, Weisser G, Hammer G, Scholz P, Blettner M (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51(2):103–111CrossRefGoogle Scholar
  33. Land CE, Tokunaga M, Koyama K, Soda M, Preston DL, Nishimori I, Tokuoka S (2003) Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 160(6):707–717CrossRefGoogle Scholar
  34. Lechel U, Becker C, Langenfeld-Jager G, Brix G (2009) Dose reduction by automatic exposure control in multi detector computed tomography: comparison between measurement and calculation. Eur Radiol 19(4):1027–1034CrossRefGoogle Scholar
  35. Linet MS, Kim KP, Rajaraman P (2009) Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol 39(Suppl 1):S4–26CrossRefGoogle Scholar
  36. Little MP (2001) Comparison of the risks of cancer incidence and mortality following radiation therapy for benign and malignant disease with the cancer risks observed in the Japanese A-bomb survivors. Int J Radiat Biol 77(4):431–464CrossRefGoogle Scholar
  37. Little MP (2008) Leukaemia following childhood radiation exposure in the Japanese atomic bomb survivors and in medically exposed groups. Radiat Prot Dosimetry 132(2):156–165CrossRefGoogle Scholar
  38. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS: a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337CrossRefGoogle Scholar
  39. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J 346:f2360CrossRefGoogle Scholar
  40. Mattsson A, Ruden BI, Hall P, Wilking N, Rutqvist LE (1993) Radiation-induced breast cancer: long-term follow-up of radiation therapy for benign breast disease. J Natl Cancer Inst 85(20):1679–1685CrossRefGoogle Scholar
  41. McLean D, Malitz N, Lewis S (2003) Survey of effective dose levels from typical paediatric CT protocols. Australas Radiol 47(2):135–142CrossRefGoogle Scholar
  42. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008a) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263CrossRefGoogle Scholar
  43. Mettler FA, Thomadsen BR, Bhargavan M, Gilley DB, Gray JE, Lipoti JA, McCrohan J, Yoshizumi TT, Mahesh M (2008b) Medical radiation exposure in the U.S. in preliminary results. Health Phys 95(5):502–507CrossRefGoogle Scholar
  44. NCRP (2012) National council on radiation protection and measurements (NCRP) uncertainties in the estimation of radiation risks and probability of disease causation report No 171. NCRP Bethesda, MDGoogle Scholar
  45. Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S, Yasui Y, Kasper CE, Mertens AC, Donaldson SS, Meadows AT, Inskip PD (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98(21):1528–1537CrossRefGoogle Scholar
  46. NIH (2003) Report of the NCI-CDC working group to revise the 1985 NIH radioepidemiological tables. National Institutes of Health (NIH) Publication No. 03-5387. Bethesda, MDGoogle Scholar
  47. NRC (2006) Committee to assess health risks from exposure to low levels of ionizing radiation, national research council (NRC). Health risks from exposure to low levels of ionizing radiation: BEIR VII—Phase 2. National Academy of Sciences, Washington, DCGoogle Scholar
  48. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177(3):229–243CrossRefGoogle Scholar
  49. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de Gonzalez A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505CrossRefGoogle Scholar
  50. Pettorini BL, Park YS, Caldarelli M, Massimi L, Tamburrini G, Di Rocco C (2008) Radiation-induced brain tumours after central nervous system irradiation in childhood: a review. Childs Nerv Syst 24(7):793–805CrossRefGoogle Scholar
  51. Phillips CV (2003) Quantifying and reporting uncertainty from systematic errors. Epidemiology 14(4):459–466Google Scholar
  52. Preston D, Lubin J, Pierce DA, McConney M (1993) Epicure users guide. Hirosoft, SeattleGoogle Scholar
  53. Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice JD Jr (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res 158(2):220–235CrossRefGoogle Scholar
  54. Preston DL, Pierce DA, Shimizu Y, Cullings HM, Fujita S, Funamoto S, Kodama K (2004) Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res 162(4):377–389CrossRefGoogle Scholar
  55. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64CrossRefGoogle Scholar
  56. Richardson D, Sugiyama H, Nishi N, Sakata R, Shimizu Y, Grant EJ, Soda M, Hsu WL, Suyama A, Kodama K, Kasagi F (2009) Ionizing radiation and leukemia mortality among Japanese atomic bomb survivors, 1950–2000. Radiat Res 172(3):368–382CrossRefGoogle Scholar
  57. Ron E (2003) Cancer risks from medical radiation. Health Phys 85(1):47–59CrossRefGoogle Scholar
  58. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141(3):259–277CrossRefGoogle Scholar
  59. Ronckers CM, Doody MM, Lonstein JE, Stovall M, Land CE (2008) Multiple diagnostic X-rays for spine deformities and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 17(3):605–613CrossRefGoogle Scholar
  60. Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I (2005) Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res 163(4):424–432CrossRefGoogle Scholar
  61. Schulze-Rath R, Hammer GP, Blettner M (2008) Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiat Environ Biophys 47(3):301–312CrossRefGoogle Scholar
  62. Shore RE, Moseson M, Harley N, Pasternack BS (2003) Tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (Tinea capitis). Health Phys 85(4):404–408CrossRefGoogle Scholar
  63. Shrimpton PC, Jones DG, Hillier MC (1991) Survey of CT practice in the UK; Part 2: dosimetric aspects. London, UKGoogle Scholar
  64. Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79(948):968–980CrossRefGoogle Scholar
  65. Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, Berkow RL, Hammond S, Neglia JP, Meadows AT, Sklar CA, Robison LL, Inskip PD (2005) Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet 365(9476):2014–2023CrossRefGoogle Scholar
  66. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, Berrington de Gonzalez A, Miglioretti DL (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169(22):2078–2086CrossRefGoogle Scholar
  67. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, Greenlee RT, Kruger RL, Hornbrook MC, Roblin D, Solberg LI, Vanneman N, Weinmann S, Williams AE (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. JAMA 307(22):2400–2409CrossRefGoogle Scholar
  68. Stamm G, Nagel HD (2002) CT-expo–a novel program for dose evaluation in CT. Rofo 174(12):1570–1576CrossRefGoogle Scholar
  69. Thierry-Chef I, Dabin J, Friberg EG, Hermen J, Istad TS, Jahnen A, Krille L, Lee C, Maccia C, Nordenskjold A, Olerud HM, Rani K, Rehel JL, Simon SL, Struelens L, Kesminiene A (2013) Assessing organ doses from paediatric CT scans–a novel approach for an epidemiology study (the EPI-CT study). Int J Environ Res Public Health 10(2):717–728CrossRefGoogle Scholar
  70. Tukenova M, Guibout C, Hawkins M, Quiniou E, Mousannif A, Pacquement H, Winter D, Bridier A, Lefkopoulos D, Oberlin O, Diallo I, de Vathaire F (2011) Radiation therapy and late mortality from second sarcoma, carcinoma, and hematological malignancies after a solid cancer in childhood. Int J Radiat Oncol Biol Phys 80(2):339–346CrossRefGoogle Scholar
  71. UNSCEAR (2006) Report of the United Nations scientific committee on the effects of atomic radiation. UNSCEAR 2006 report. Volume I. Annex A: epidemiological studies of radiation and cancer United Nations, New YorkGoogle Scholar
  72. UNSCEAR (2008) Report of the United Nations Scientific committee on the effects of atomic radiation. UNSCEAR 2008 report. Volume I. Annex A: medical radiation exposures. United Nations, New YorkGoogle Scholar
  73. Vaeth M, Pierce DA (1990) Calculating excess lifetime risk in relative risk models. Environ Health Perspect 87:83–94CrossRefGoogle Scholar
  74. Wakeford R (2013) The risk of childhood leukaemia following exposure to ionising radiation—a review. J Radiol Prot 33(1):1–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Neige Journy
    • 1
  • Sophie Ancelet
    • 1
  • Jean-Luc Rehel
    • 2
  • Myriam Mezzarobba
    • 1
  • Bernard Aubert
    • 2
  • Dominique Laurier
    • 1
  • Marie-Odile Bernier
    • 1
  1. 1.Laboratory of EpidemiologyInstitut de Radioprotection et de Sûreté NucléaireFontenay-aux-RosesFrance
  2. 2.Medical Radiation Protection Expertise UnitInstitut de Radioprotection et de Sûreté NucléaireFontenay-aux-RosesFrance

Personalised recommendations