Radiation and Environmental Biophysics

, Volume 52, Issue 4, pp 531–537 | Cite as

Microbeam irradiation of C. elegans nematode in microfluidic channels

  • M. BuonannoEmail author
  • G. Garty
  • M. Grad
  • M. Gendrel
  • O. Hobert
  • D. J. Brenner
Short Communication


To perform high-throughput studies on the biological effects of ionizing radiation in vivo, we have implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows the immobilization of worms with minimal stress for a rapid and controlled microbeam irradiation of multiple samples in parallel. Adapted from an established design, our microfluidic clamp consists of 16 tapered channels with 10-μm-thin bottoms to ensure charged particle traversal. Worms are introduced into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel guarantees that young adult worms are immobilized within minutes without the use of anesthesia. After site-specific irradiation with the microbeam, the worms can be released by reversing the flow direction in the clamp and collected for analysis of biological endpoints such as repair of radiation-induced DNA damage. For such studies, minimal sample manipulation and reduced use of drugs such as anesthetics that might interfere with normal physiological processes are preferable. By using our microfluidic device that allows simultaneous immobilization and imaging for irradiation of several whole living samples on a single clamp, here we show that 4.5-MeV proton microbeam irradiation induced DNA damage in wild-type C. elegans, as assessed by the formation of Rad51 foci that are essential for homologous repair of radiation-induced DNA damage.


Microbeam irradiation with microfluidic devices C. elegans microbeam irradiation Small animal microbeam irradiation Rad51 foci in C. elegans 



This work was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) under Grant: 5 P41 EB002033 and an EMBO long-term fellowship and HFSPO long-term fellowship to M.G. We are grateful to the Caenorhabditis Genetics Center for providing the mutant strain. We thank the RARAF team for their scientific support and advice.


  1. Alpi A, Pasierbek P, Gartner A, Loidl J (2003) Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma 112(1):6–16CrossRefGoogle Scholar
  2. Bertucci A, Pocock RD, Randers-Pehrson G, Brenner DJ (2009) Microbeam irradiation of the C. elegans nematode. J Radiat Res 50(Suppl A):A49–A54CrossRefGoogle Scholar
  3. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94Google Scholar
  4. Chung K, Crane MM, Lu H (2008) Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods 5(7):637–643CrossRefGoogle Scholar
  5. Duerr JS, Frisby DL, Gaskin J, Duke A, Asermely K, Huddleston D, Eiden LE, Rand JB (1999) The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci 19(1):72–84Google Scholar
  6. Durante M, Friedl AA (2011) New challenges in radiobiology research with microbeams. Radiat Environ Biophys 50(3):335–338CrossRefGoogle Scholar
  7. Garty G, Ross GJ, Bigelow AW, Randers-Pehrson G, Brenner DJ (2006) Testing the stand-alone microbeam at Columbia University. Radiat Prot Dosimetry 122(1–4):292–296Google Scholar
  8. Geard CR, Jenkins-Baker G, Marino SA, Ponnaiya B (2002) Novel approaches with track segment alpha particles and cell co-cultures in studies of bystander effects. Radiat Prot Dosimetry 99(1–4):233–236CrossRefGoogle Scholar
  9. Gilleland CL, Rohde CB, Zeng F, Yanik MF (2010) Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat Protoc 5(12):1888–1902CrossRefGoogle Scholar
  10. Goodhead DT (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65(1):7–17CrossRefGoogle Scholar
  11. Greiss S, Schumacher B, Grandien K, Rothblatt J, Gartner A (2008) Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics 9:334CrossRefGoogle Scholar
  12. Greubel C, Hable V, Drexler GA, Hauptner A, Dietzel S, Strickfaden H, Baur I, Krucken R, Cremer T, Friedl AA, Dollinger G (2008) Quantitative analysis of DNA-damage response factors after sequential ion microirradiation. Radiat Environ Biophys 47(4):415–422CrossRefGoogle Scholar
  13. Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, Yang C (2006) Optofluidic microscopy-a method for implementing a high resolution optical microscope on a chip. Lab Chip 6(10):1274–1276CrossRefGoogle Scholar
  14. Hulme SE, Shevkoplyas SS, Apfeld J, Fontana W, Whitesides GM (2007) A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 7(11):1515–1523CrossRefGoogle Scholar
  15. Karbowski J, Cronin CJ, Seah A, Mendel JE, Cleary D, Sternberg PW (2006) Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. J Theor Biol 242(3):652–669MathSciNetCrossRefGoogle Scholar
  16. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26(3):583–594CrossRefGoogle Scholar
  17. Kim N, Dempsey CM, Zoval JV, Sze J-Y, Madou MJ (2007) “Automated microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans”. Sens Actuators B Chem 122:511CrossRefGoogle Scholar
  18. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86(1):165–172CrossRefGoogle Scholar
  19. Lange D, Storment CW, Conley CA, Kovacs GTA (2005) A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space. Sens Actuators B 107:904–914CrossRefGoogle Scholar
  20. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377(6547):351–354ADSCrossRefGoogle Scholar
  21. Lewis JA, Wu CH, Berg H, Levine JH (1980) The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95(4):905–928Google Scholar
  22. Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21(3):397–404MathSciNetCrossRefGoogle Scholar
  23. Martin JS, Winkelmann N, Petalcorin MI, McIlwraith MJ, Boulton SJ (2005) RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol Cell Biol 25(8):3127–3139CrossRefGoogle Scholar
  24. Morgan WF (2003a) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159(5):567–580CrossRefGoogle Scholar
  25. Morgan WF (2003b) Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159(5):581–596CrossRefGoogle Scholar
  26. Mosconi M, Giesen U, Langner F, Mielke C, Dalla Rosa I, Dirks WG (2011) 53BP1 and MDC1 foci formation in HT-1080 cells for low- and high-LET microbeam irradiations. Radiat Environ Biophys 50(3):345–352CrossRefGoogle Scholar
  27. O’Rourke EJ, Conery AL, Moy TI (2009) Whole-animal high-throughput screens: the C. elegans model. Methods Mol Biol 486:57–75CrossRefGoogle Scholar
  28. Rinaldo C, Bazzicalupo P, Ederle S, Hilliard M, La Volpe A (2002) Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics 160(2):471–479Google Scholar
  29. Rohde CB, Zeng F, Gonzalez-Rubio R, Angel M, Yanik MF (2007) Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc Natl Acad Sci USA 104(35):13891–13895ADSCrossRefGoogle Scholar
  30. Rothman JH, Singson A (2012) Caenorhabditis elegans. Cell Biol PhysiolGoogle Scholar
  31. Sakashita T, Takanami T, Yanase S, Hamada N, Suzuki M, Kimura T, Kobayashi Y, Ishii N, Higashitani A (2010) Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. J Radiat Res 51(2):107–121CrossRefGoogle Scholar
  32. Shi W, Wen H, Lin B, Qin J (2011) Microfluidic platform for the study of Caenorhabditis elegans. Top Curr Chem 304:323–338CrossRefGoogle Scholar
  33. Shinohara A, Ogawa T (1995) Homologous recombination and the roles of double-strand breaks. Trends Biochem Sci 20(10):387–391CrossRefGoogle Scholar
  34. Stiernagle T (1999) C. elegans maintenance. C. elegans: a practical approach. I. A. Hope. Oxford University Press, OxfordGoogle Scholar
  35. Sugimoto T, Dazai K, Sakashita T, Funayama T, Wada S, Hamada N, Kakizaki T, Kobayashi Y, Higashitani A (2006) Cell cycle arrest and apoptosis in Caenorhabditis elegans germline cells following heavy-ion microbeam irradiation. Int J Radiat Biol 82(1):31–38CrossRefGoogle Scholar
  36. Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265(5176):1241–1243ADSCrossRefGoogle Scholar
  37. Takanami T, Sato S, Ishihara T, Katsura I, Takahashi H, Higashitani A (1998) Characterization of a Caenorhabditis elegans recA-like gene Ce-rdh-1 involved in meiotic recombination. DNA Res 5(6):373–377CrossRefGoogle Scholar
  38. Takanami T, Mori A, Takahashi H, Higashitani A (2000) Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans. Nucleic Acids Res 28(21):4232–4236CrossRefGoogle Scholar
  39. Ward JF (1995) Radiation mutagenesis: the initial DNA lesions responsible. Radiat Res 142(3):362–368CrossRefGoogle Scholar
  40. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Vol 37(5):550–575CrossRefGoogle Scholar
  41. Zeng F, Rohde CB, Yanik MF (2008) Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8(5):653–656CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Buonanno
    • 1
    Email author
  • G. Garty
    • 1
  • M. Grad
    • 1
  • M. Gendrel
    • 2
  • O. Hobert
    • 2
  • D. J. Brenner
    • 1
  1. 1.Radiological Research Accelerator FacilityColumbia UniversityIrvingtonUSA
  2. 2.Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical InstituteColumbia University Medical CenterNew YorkUSA

Personalised recommendations