Radiation and Environmental Biophysics

, Volume 51, Issue 2, pp 195–204 | Cite as

Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

  • Elisa M. Heber
  • Peter J. Kueffer
  • Mark W. LeeJr.
  • M. Frederick Hawthorne
  • Marcela A. Garabalino
  • Ana J. Molinari
  • David W. Nigg
  • William Bauer
  • Andrea Monti Hughes
  • Emiliano C. C. Pozzi
  • Verónica A. Trivillin
  • Amanda E. Schwint
Original Paper


Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.


BNCT Boron neutron capture therapy Liposomes Biodistribution Experimental oral cancer Boron 



This study was supported in part by the University of Missouri through the MU International Institute for Nano and Molecular Medicine, the United States Department of Energy through the Idaho National Laboratory Faculty-Staff Exchange and Division Initiative Support programs, and a grant from the National Agency for the Promotion of Science and Technology of Argentina (PICT 2006—00700). The authors wish to acknowledge the expert advice and generous support of Dr. Claudio Devida and his team with ICP-MS boron measurements.


  1. Altieri S, Balzi M, Bortolussi S, Bruschi P, Ciani L, Clerici AM, Faraoni P, Ferrari C, Gadan MA, Panza L, Pietrangeli D, Ricciardi G, Ristori S (2009) Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. J Med Chem 52:7829–7835CrossRefGoogle Scholar
  2. Barenholz Y (2001) Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 6:66–77CrossRefGoogle Scholar
  3. Barth RF, Coderre JA, Vicente MGH, Blue TE (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002CrossRefGoogle Scholar
  4. Cardoso J, Nievas S, Pereyra M, Schwint A, Trivillin V, Pozzi E, Heber E, Monti Hughes A, Sanchez P, Bumaschny E, Itoiz M, Liberman S (2009) Boron biodistribution study in colorectal liver metastasis patients in Argentina. Appl Radiat Isot 67:576–579CrossRefGoogle Scholar
  5. Carlsson J, Bohl Kuhlberg E, Capala J, Sjöberg S, Edwards K, Gedda L (2003) Ligand liposomes and boron neutron capture therapy. J Neuro-Oncol 62:47–59Google Scholar
  6. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257CrossRefGoogle Scholar
  7. Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18CrossRefGoogle Scholar
  8. Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM, Chadha M, Gebbers JO, Shady M, Slatkin DN (1998) Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149:163–170CrossRefGoogle Scholar
  9. Feakes DA, Shelly K, Knobler CB, Hawthorne MF (1994) Na3 [B20H17NH3]: synthesis and liposomal delivery to murine tumors. Proc Natl Acad Sci USA 91:3029–3033ADSCrossRefGoogle Scholar
  10. Feakes DA, Shelly K, Hawthorne MF (1995) Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci USA 92:1367–1370ADSCrossRefGoogle Scholar
  11. Garabalino MA, Monti Hughes A, Molinari AJ, Heber EM, Pozzi ECC, Cardoso JE, Colombo LL, Nievas SI, Nigg DW, Aromando RF, Itoiz ME, Trivillin VA, Schwint AE (2011) Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model. Radiat Environ Biophys 50:199–207CrossRefGoogle Scholar
  12. Gibson CR, Staubus AE, Barth RF, Yang W, Ferketich AK, Moeschberger MM (2003) Pharmacokinetics of sodium borocaptate: a critical assessment of dosing paradigms for boron neutron capture therapy. J Neuro-Oncol 62:157–169Google Scholar
  13. Gonzalez SJ, Bonomi MR, Santa Cruz GA, Blaumann HR, Calzetta Larrieu OA, Menéndez P, Jiménez Rebagliati R, Longhino J, Feld DB, Dagrosa MA, Argerich C, Castiglia SG, Batistoni DA, Liberman SJ, Roth BM (2004) First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiat Isot 61(5):1101–1105CrossRefGoogle Scholar
  14. Heber E, Trivillin V, Nigg D, Kreimann EL, Itoiz ME, Rebagliati RJ, Batistoni D, Schwint AE (2004) Biodistribution of GB-10 (Na210B10H10) in an experimental model of oral cancer in the hamster cheek pouch. Arch Oral Biol 49:313–324CrossRefGoogle Scholar
  15. Heber EM, Trivillin VA, Nigg DW, Itoiz ME, González BN, Rebagliati RJ, Batistoni D, Kreimann EL, Schwint AE (2006) Homogeneous boron targeting of heterogeneous tumors for Boron neutron capture therapy (BNCT): chemical analyses in the hamster cheek pouch oral cancer model. Arch Oral Biol 51:922–929CrossRefGoogle Scholar
  16. Heber E, Aromando RF, Trivillin VA, Itoiz ME, Nigg DW, Kreimann EL, Schwint AE (2007) Therapeutic effect of boron neutron capture therapy (BNCT) on field cancerized tissue: inhibition of DNA synthesis and lag in the development of second primary tumors in precancerous tissue around treated tumors in DMBA-induced carcinogenesis in the hamster cheek pouch oral cancer model. Arch Oral Biol 52:273–279CrossRefGoogle Scholar
  17. Heber EM, Monti Hughes A, Pozzi ECC, Itoiz ME, Aromando RF, Molinari AJ, Garabalino MA, Nigg DW, Trivillin VA, Schwint AE (2010) Development of a model of tissue with potentially malignant disorders (PMD) in the hamster cheek pouch to explore the long-term potential therapeutic and/or toxic effects of different therapeutic modalities. Arch Oral Biol 55:46–51CrossRefGoogle Scholar
  18. Hoebers F, Heemsbergen W, Moor S, Lopez M, Klop M, Tesselaar M et al (2011) Reirradiation for head-and-neck cancer: delicate balance between effectiveness and toxicity. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  19. Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593CrossRefGoogle Scholar
  20. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62ADSCrossRefGoogle Scholar
  21. Kankaanranta L, Seppälä T, Koivunoro H, Välimäki P, Beule A, Collan J et al (2011a) l-Boronophenylalanine-mediated boron neutron capture therapy for malignant glioma progressing after external beam radiation therapy: a phase I study. Int J Radiat Oncol Biol Phys 80:369–376CrossRefGoogle Scholar
  22. Kankaanranta L, Seppälä T, Koivunoro H, Saarilahti K, Atula T, Collan J et al (2011) Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of phase I/II trial. Int J Radiat Oncol Biol Phys PMID:21236605Google Scholar
  23. Kastenbauer E, Wollenberg B (1999) In search of new treatment methods for head-neck carcinoma. Laryngorhinootologie 78:31–35CrossRefGoogle Scholar
  24. Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61:1069–1073CrossRefGoogle Scholar
  25. Kreimann EL, Itoiz ME, Dagrosa A, Garavaglia R, Farías S, Batistoni D, Schwint AE (2001a) The hamster cheek pouch as a model of oral cancer for boron neutron capture therapy studies: selective delivery of boron by boronophenlyalanine. Cancer Res 61:8775–8781Google Scholar
  26. Kreimann EL, Itoiz ME, Longhino J, Blaumann H, Calzetta O, Schwint AE (2001b) Boron neutron capture therapy for the treatment of oral cancer in the hamster cheek pouch model. Cancer Res) 61:8638–8642 (Advances in Brief)Google Scholar
  27. Li T, Hamdi J, Hawthorne MF (2006) Unilamellar liposomes with enhanced boron content. Bioconjug Chem 17:15–20CrossRefGoogle Scholar
  28. Lin TY, Liu YW (2011) Development and verification of THORplan-a BNCT treatment planning system for THOR. Appl Radiat Isot PMID:21497101Google Scholar
  29. Masunaga S, Kasaoka S, Maruyama K, Nigg D, Sakurai Y, Nagata K, Suzuki M, Kinashi Y, Maruhashi A, Ono K (2006) The potential of transferrin-pendant-type polyethylenglycol liposomes encapsulating decahydrodecaborate-10B (GB-10) as 10B-carriers for boron neutron capture therapy. Int J Radiat Oncol Biol Phys 66(5):1515–1522CrossRefGoogle Scholar
  30. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392Google Scholar
  31. Mehrotra R, Ibrahim R, Eckardt A, Driemel O, Singh M (2011) Novel strategies in head and neck cancer. Curr Cancer Drug Targets 11:465–478CrossRefGoogle Scholar
  32. Miller M, Quintana J, Ojeda J, Langan S, Thorp S, Pozzi E, Sztejnberg M, Estryk G, Nosal R, Saire E, Agrazar H, Graiño F (2009) New irradiation facility for biomedical applications at the RA-3 reactor thermal column. Appl Radiat Isot 67(7–8 Suppl):226–229CrossRefGoogle Scholar
  33. Miyajima Y, Nakamura H, Kuwata Y, Lee J, Masunaga S, Ono K, Maruyama K (2006) Transferrin-loaded nido-carborane liposomes: tumor-targeting boron delivery system for neutron capture therapy. Bioconjug Chem 17:1314–1320CrossRefGoogle Scholar
  34. Molinari AJ, Pozzi EC, Monti Hughes A, Heber EM, Garabalino MA, Thorp SI et al (2011) “Sequential” boron neutron capture therapy (BNCT): a novel approach to BNCT for the treatment of oral cancer in the hamster cheek pouch model. Radiat Res 175:463–472CrossRefGoogle Scholar
  35. Monti Hughes A, Heber EM, Pozzi E, Nigg DW, Calzetta O, Blaumann H, Longhino J, Nievas SI, Aromando RF, Itoiz ME, Trivillin VA, Schwint AE (2009) Boron neutron capture therapy (BNCT) inhibits tumor development from field-cancerized tissue: an experimental study that supports a new application of BNCT. Appl Radiat Isot 67(7–8 Suppl):S313–S317CrossRefGoogle Scholar
  36. Morris L (1961) Factors influencing experimental carcinogenesis in the hamster cheek pouch. J Dent Res 40:3–15CrossRefGoogle Scholar
  37. Morris GM, Coderre JA, Hopewell JW, Micca PL, Rezvani M (1994) Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium. Radiother Oncol 32(2):144–153CrossRefGoogle Scholar
  38. Nakai K, Yamamoto T, Aiyama H, Takada T, Yoshida F, Kageji T, Kumada H, Isobe T, Endo K, Matsuda M, Tsurubuchi T, Shibata Y, Takano S, Mizumoto M, Tsuboi K, Matsumura A (2011) Boron neutron capture therapy combined with fractionated photon irradiation for glioblastoma: a recursive partitioning analysis of BNCT patients. Appl Radiat Isot PMID:21565517Google Scholar
  39. Nakamura H (2009) Liposomal boron delivery for neutron capture therapy. Meth Enzymol 465:179–208CrossRefGoogle Scholar
  40. Ono K, Masunaga S, Suzuki M, Kinashi Y, Takagaki M, Akaboshi M (1999) The combined effect of boronophenylalanine and borocaptate in boron neutron capture therapy for SCCVII tumors in mice. Int J Radiat Oncol Biol Phys 43:431–436CrossRefGoogle Scholar
  41. Pan XQ, Wang H, Shukla S, Sekido M, Adams DM, Tjarks W, Barth RF, Lee RJ (2002) Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjug Chem 13:435–442CrossRefGoogle Scholar
  42. Pozzi E, Nigg DW, Miller M, Thorp SI, Heber EM, Zarza L, Estryk G, Monti Hughes A, Molinari AJ, Garabalino M, Itoiz ME, Aromando RF, Quintana J, Trivillin VA, Schwint AE (2009) Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer. Appl Radiat Isot 67(7–8 Suppl):S309–S312CrossRefGoogle Scholar
  43. Rao M, Trivillin VA, Heber EM, Cantarelli MA, Itoiz ME, Nigg DW, Rebagliati RJ, Batistoni D, Schwint AE (2004) BNCT of 3 cases of spontaneous head and neck cancer in feline patients. Appl Radiat Isot 61(5):947–952CrossRefGoogle Scholar
  44. Salley JJ (1954) Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res 33:253–262CrossRefGoogle Scholar
  45. Santa Cruz GA, Zamenhof RG (2004) The microdosimetry of the (10) B reaction in boron neutron capture therapy: a new generalized theory. Radiat Res 162:702–710CrossRefGoogle Scholar
  46. Schwint AE, Itoiz ME, Cabrini RL (1984) A quantitative histochemical technique for the study of vascularization in tissue sections using horseradish peroxidase. Histochem J 16:907–911CrossRefGoogle Scholar
  47. Shelly K, Feakes DA, Hawthorne MF, Schmidt PG, Krisch TA, Bauer WF (1992) Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc Natl Acad Sci USA 89:9039–9043ADSCrossRefGoogle Scholar
  48. Shirakawa M, Yamamto T, Nakai K, Aburai K, Kawaboti S, Tsurubuchi T, Yamamoto Y, Yokoyama Y, Okuno H, Matsumura A (2009) Synthesis and evaluation of a novel liposome containing BPA-peptide conjugate for BNCT. Appl Radiat Isot 67:588–590CrossRefGoogle Scholar
  49. Shklar G, Eisenberg E, Flynn E (1979) Immunoenhancing agents and experimental leukoplakia and carcinoma of the buccal pouch. Prog Exp Tumor Res 24:269–282Google Scholar
  50. Smith D, Haffty BG (1999) Molecular markers as prognostic factors for local recurrence and radioresistance in head and neck squamous cell carcinoma. Radiat Oncol Investig 7:125–144CrossRefGoogle Scholar
  51. Smith DL, Chandra S, Barth RF, Yang W, Joel DD, Coderre JA (2001) Quantitavive imaging and microlocalzation of boron-10 in brain tumors and infiltrating cells by SIMS ion microscopy: relevance to neutron capture therapy. Cancer Res 61:8179–8187Google Scholar
  52. Sonis ST (2004) A biological approach to mucositis. J Support Oncol 2:21–32Google Scholar
  53. Trivillin VA, Heber EM, Itoiz ME, Nigg D, Calzetta O, Blaumann H, Longhino J, Schwint AE (2004) Radiobiology of BNCT mediated by GB-10 and GB-10 + BPA in experimental oral cancer. Appl Radiat Isot 61:939–945CrossRefGoogle Scholar
  54. Trivillin VA, Heber EM, Nigg DW, Itoiz ME, Calzetta O, Blaumann H, Longhino J, Schwint AE (2006) Therapeutic success of boron neutron capture therapy (BNCT) mediated by a chemically non-selective boron agent in an experimental model of oral cancer: a new paradigm in BNCT radiobiology. Radiat Res 166:387–396CrossRefGoogle Scholar
  55. Trivillin VA, Heber EM, Rao M, Cantarelli MA, Itoiz ME, Nigg DW, Calzetta O, Blaumann H, Longhino J, Schwint AE (2008) Boron neutron capture therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines. Radiat Environ Biophys 47(1):147–155CrossRefGoogle Scholar
  56. Ueno M, Ban SH, Nakai K, Inomata R, Kaneda Y, Matsumura A, Nakamura H (2010) Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioorg Med Chem 18:3059–3065CrossRefGoogle Scholar
  57. Wang LW, Wang SJ, Chu PY, Ho CY, Jiang SH, Liu YWH, Liu YH, Liu HM, Peir JJ, Chou FI, Yen SH, Lee YL, Chang CW, Liu CS, Chen YW, Ono K (2011) BNCT for locally recurrent head and neck cancer: preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor. Appl Radiat Isot PMID:21478023Google Scholar
  58. Watson-Clark RA, Banquerigo ML, Shelly K, Hawthorne MF (1998) Model studies directed toward the application of boron neutron capture therapy to rheumatoid arthritis: boron delivery by liposomes in rat collagen-induced arthritis. Proc Natl Acad Sci USA 95:2531–2534ADSCrossRefGoogle Scholar
  59. Yamamoto T, Nakai K, Nariai T, Kumada H, Okumura T, Mizumoto M, Tsuboi K, Zaboronok A, Ishikawa E, Aiyama H, Endo K, Takada T, Yoshida F, Shibata Y, Matsumura A (2011) The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation. Appl Radiat Isot PMID:21393005Google Scholar
  60. Zonta A, Prati U, Roveda L, Ferrari C, Zonta S, Clerici AM, Zonta C, Pinelli T, Fossati F, Altieri S, Bortolussi S, Bruschi P, Nano R, Barni S, Chiari P, Manzini G (2006) Clinical lessons from the first applications of BNCT on unresectable liver metastases. J Phy Conf Ser 41:484–495ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Elisa M. Heber
    • 1
  • Peter J. Kueffer
    • 2
  • Mark W. LeeJr.
    • 2
  • M. Frederick Hawthorne
    • 2
  • Marcela A. Garabalino
    • 1
  • Ana J. Molinari
    • 1
  • David W. Nigg
    • 4
  • William Bauer
    • 4
  • Andrea Monti Hughes
    • 1
  • Emiliano C. C. Pozzi
    • 3
  • Verónica A. Trivillin
    • 1
  • Amanda E. Schwint
    • 1
  1. 1.Department of RadiobiologyNational Atomic Energy CommissionSan MartinArgentina
  2. 2.International Institute of Nano and Molecular MedicineUniversity of MissouriColumbiaUSA
  3. 3.Department of Research and Production ReactorsNational Atomic Energy CommissionEzeizaArgentina
  4. 4.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations