Advertisement

Radiation and Environmental Biophysics

, Volume 51, Issue 1, pp 23–32 | Cite as

Induction and repair of DNA double-strand breaks assessed by gamma-H2AX foci after irradiation with pulsed or continuous proton beams

  • O. ZlobinskayaEmail author
  • G. Dollinger
  • D. Michalski
  • V. Hable
  • C. Greubel
  • G. Du
  • G. Multhoff
  • B. Röper
  • M. Molls
  • T. E. Schmid
Original Paper

Abstract

In particle tumor therapy including beam scanning at accelerators, the dose per voxel is delivered within about 100 ms. In contrast, the new technology of laser plasma acceleration will produce ultimately shorter particle packages that deliver the dose within a nanosecond. Here, possible differences for relative biological effectiveness in creating DNA double-strand breaks in pulsed or continuous irradiation mode are studied. HeLa cells were irradiated with 1 or 5 Gy of 20-MeV protons at the Munich tandem accelerator, either at continuous mode (100 ms), or applying a single pulse of 1-ns duration. Cells were fixed 1 h after 1-Gy irradiation and 24 h after 5-Gy irradiation, respectively. A dose–effect curve based on five doses of X-rays was taken as reference. The total number of phosphorylated histone H2AX (gamma-H2AX) foci per cell was determined using a custom-made software macro for gamma-H2AX foci counting. For 1 h after 1-Gy 20-MeV proton exposures, values for the relative biological effectiveness (RBE) of 0.97 ± 0.19 for pulsed and 1.13 ± 0.21 for continuous irradiations were obtained in the first experiment 1.13 ± 0.09 and 1.16 ± 0.09 in the second experiment. After 5 Gy and 24 h, RBE values of 0.99 ± 0.29 and 0.91 ± 0.23 were calculated, respectively. Based on the gamma-H2AX foci numbers obtained, no significant differences in RBE between pulsed and continuous proton irradiation in HeLa cells were detected. These results are well in line with our data on micronucleus induction in HeLa cells.

Keywords

RBE Protons DNA DSB repair Gamma-H2AX foci Pulsed irradiation 

Notes

Acknowledgments

This work was supported by the DFG Cluster of Excellence: Munich-Centre for Advanced Photonics, by the EU-project EuroDyna, by the Maier Leibnitz Laboratory Munich, by the German Federal Ministry of Education and Research (BMBF, PtJ-Bio, 0313909), by the Deutsche Forschungsgemeinschaft (DFG, SFB824), BMBF (MOBITUM, 01EZ0826; Kompetenzverbund Strahlenforschung, 03NUK007E) and by the European Union (EU-CARDIORISK, FP7-21103).

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

  1. Auer S, Hable V, Greubel C, Drexler G, Schmid T, Belka C, Dollinger G, Friedl A (2011) Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiation Oncology 6(1):139CrossRefGoogle Scholar
  2. Bedford JS (1991) Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionizing radiations. Int J Radiat Oncol Biol Phys 21(6):1457–1469MathSciNetCrossRefGoogle Scholar
  3. Bhogal N, Jalali F, Bristow RG (2009) Microscopic imaging of DNA repair foci in irradiated normal tissues. Int J Radiat Biol 85(9):732–746CrossRefGoogle Scholar
  4. Bladen CL, Flowers MA, Miyake K, Podolsky RH, Barrett JT, Kozlowski DJ, Dynan WS (2007) Quantification of ionizing radiation-induced cell death in situ in a vertebrate embryo. Radiat Res 168(2):149–157CrossRefGoogle Scholar
  5. Bocker W, Iliakis G (2006) Computational Methods for analysis of foci: validation for radiation-induced gamma-H2AX foci in human cells. Radiat Res 165(1):113–124CrossRefGoogle Scholar
  6. Bouquet F, Muller C, Salles B (2006) The loss of gammaH2AX signal is a marker of DNA double strand breaks repair only at low levels of DNA damage. Cell Cycle 5(10):1116–1122CrossRefGoogle Scholar
  7. Bulanov SS, Brantov A, Bychenkov VY, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K, Litzenberg DW, Maksimchuk A (2008) Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. Med Phys 35(5):1770–1776CrossRefGoogle Scholar
  8. Cai Z, Vallis KA, Reilly RM (2009) Computational analysis of the number, area and density of gamma-H2AX foci in breast cancer cells exposed to (111)In-DTPA-hEGF or gamma-rays using Image-J software. Int J Radiat Biol 85(3):262–271CrossRefGoogle Scholar
  9. Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J (2005) gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 20(5):801–809CrossRefGoogle Scholar
  10. Dollinger G, Bergmaier A, Hable V, Hertenberger R, Greubel C, Hauptner A, Reichart P (2009) Nanosecond proton microbeam. Nucl Instr and Meth B Section B 267:2008–2012ADSCrossRefGoogle Scholar
  11. Franken NA, ten Cate R, Krawczyk PM, Stap J, Haveman J, Aten J, Barendsen GW (2011) Comparison of RBE values of high-LET alpha-particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death. Radiation Oncology (London, England) 6:64Google Scholar
  12. Hauptner A, Dietzel S, Drexler GA, Reichart P, Krucken R, Cremer T, Friedl AA, Dollinger G (2004) Microirradiation of cells with energetic heavy ions. Radiat Environ Biophys 42(4):237–245CrossRefGoogle Scholar
  13. Hauptner A, Krucken R, Greubel C, Hable V, Dollinger G, Drexler GA, Deutsch M, Lowe R, Friedl AA, Dietzel S, Strickfaden H, Cremer T (2006) DNA-repair protein distribution along the tracks of energetic ions. Radiat Prot Dosim 122(1–4):147–149Google Scholar
  14. Iliakis G, Cheong N (1999) In vitro rejoining of double-strand breaks in genomic DNA. Methods Mol Biol 113:473–485CrossRefGoogle Scholar
  15. Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104(1–4):14–20CrossRefGoogle Scholar
  16. Ismail IH, Hendzel MJ (2008) The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ Mol Mutagen 49(1):73–82CrossRefGoogle Scholar
  17. Kegel P, Riballo E, Kuhne M, Jeggo PA, Löbrich M (2007) X-irradiation of cells on glass slides has a dose doubling impact. DNA Repair (Amst) 6(11):1692–1697CrossRefGoogle Scholar
  18. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):5678–5694CrossRefGoogle Scholar
  19. Kobayashi J, Iwabuchi K, Miyagawa K, Sonoda E, Suzuki K, Takata M, Tauchi H (2008) Current topics in DNA double-strand break repair. J Radiat Res 49(2):93–103CrossRefGoogle Scholar
  20. Kraft SD, Richter C, Zeil K et al (2010) Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J Phys 12(8):085003CrossRefGoogle Scholar
  21. Ledingham KWD, Galster W, Sauerbrey R (2007) Laser-driven proton oncology a unique new cancer therapy? Br J Radiol 80(959):855–858CrossRefGoogle Scholar
  22. MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL (2003a) Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 79(5):351–358CrossRefGoogle Scholar
  23. MacPhail SH, Banath JP, Yu Y, Chu E, Olive PL (2003b) Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat Res 159(6):759–767CrossRefGoogle Scholar
  24. Markova E, Schultz N, Belyaev IY (2007) Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. Int J Radiat Biol 83(5):319–329CrossRefGoogle Scholar
  25. Paganetti H (2003) Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat 2(5):413–426Google Scholar
  26. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. J Biol Chem 273(10):5858–5868CrossRefGoogle Scholar
  27. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916CrossRefGoogle Scholar
  28. Roig AI, Hight SK, Shay JW (2009) Two- and three-dimensional models for risk assessment of radiation-enhanced colorectal tumorigenesis. Radiat Res 171(1):33–40CrossRefGoogle Scholar
  29. Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100(9):5057–5062ADSCrossRefGoogle Scholar
  30. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V (2007) Leukocyte DNA Damage after Multi–Detector Row CT: A Quantitative Biomarker of Low-Level Radiation Exposure1. Radiology 242(1):244–251CrossRefGoogle Scholar
  31. Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: Physical and radiobiological benefits. Reviews of Modern Physics 82(1):383–425ADSCrossRefGoogle Scholar
  32. Schell S, Wilkens JJ (2009) Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams. Phys Med Biol 54(19):N459–N466ADSCrossRefGoogle Scholar
  33. Schmid TE, Dollinger G, Hauptner A, Hable V, Greubel C, Auer S, Friedl AA, Molls M, Roper B (2009) No evidence for a different RBE between pulsed and continuous 20 MeV protons. Radiat Res 172(5):567–574CrossRefGoogle Scholar
  34. Schmid TE, Dollinger G, Beisker W, Hable V, Greubel C, Auer S, Mittag A, Tarnok A, Friedl AA, Molls M, Roper B (2010a) Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation. Int J Radiat Biol 86(8):682–691CrossRefGoogle Scholar
  35. Schmid TE, Dollinger G, Hable V, Greubel C, Zlobinskaya O, Michalski D, Molls M, Roper B (2010b) Relative biological effectiveness of pulsed and continuous 20 MeV protons for micronucleus induction in 3D human reconstructed skin tissue. Radiother Oncol 95(1):66–72CrossRefGoogle Scholar
  36. Schmid TE, Dollinger G, Hable V, Greubel C, Zlobinskaya O, Michalski D, Auer S, Friedl AA, Schmid E, Molls M, Roper B (2011) The effectiveness of 20 mev protons at nanosecond pulse lengths in producing chromosome aberrations in human-hamster hybrid cells. Radiat Res 175(6):719–727CrossRefGoogle Scholar
  37. Schweinfurth Y, Jakob B, Rudolph J, Fink D, Taucher-Scholz G (2004) Quantification of DNA double strand breaks in cancer therapy related experiments with carbon ions. Radiation Research and Biophysics with Heavy Ions 04:274Google Scholar
  38. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383CrossRefGoogle Scholar
  39. Yogo A, Sato K, Nishikino M, Mori M, Teshima T, Numasaki H, Murakami M, Demizu Y, Akagi S, Nagayama S, Ogura K, Sagisaka A, Orimo S, Nishiuchi M, Pirozhkov AS, Ikegami M, Tampo M, Sakaki H, Suzuki M, Daito I, Oishi Y, Sugiyama H, Kiriyama H, Okada H, Kanazawa S, Kondo S, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Bolton PR, Daido H (2009) Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl Phys Lett 94(18):181502–181503ADSCrossRefGoogle Scholar
  40. Zeil K, Kraft SD, Bock S, Bussmann M, Cowan TE, Kluge T, Metzkes J, Richter T, Sauerbrey R, Schramm U (2010) The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J Phys 12(4):045015CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • O. Zlobinskaya
    • 1
    Email author
  • G. Dollinger
    • 2
  • D. Michalski
    • 1
  • V. Hable
    • 2
  • C. Greubel
    • 2
  • G. Du
    • 3
  • G. Multhoff
    • 1
  • B. Röper
    • 1
  • M. Molls
    • 1
  • T. E. Schmid
    • 1
  1. 1.Klinikum rechts der Isar, Department of Radiation OncologyTechnische Universität MuenchenMunichGermany
  2. 2.Institute for Applied Physics and MetrologyUniversität der Bundeswehr MünchenNeubibergGermany
  3. 3.Technische Universität MünchenPhysik Department IIGarchingGermany

Personalised recommendations