Advertisement

Radiation and Environmental Biophysics

, Volume 50, Issue 2, pp 231–251 | Cite as

The estimation of absorbed dose rates for non-human biota: an extended intercomparison

  • J. Vives i Batlle
  • K. Beaugelin-Seiller
  • N. A. Beresford
  • D. Copplestone
  • J. Horyna
  • A. Hosseini
  • M. Johansen
  • S. Kamboj
  • D.-K. Keum
  • N. Kurosawa
  • L. Newsome
  • G. Olyslaegers
  • H. Vandenhove
  • S. Ryufuku
  • S. Vives Lynch
  • M. D. Wood
  • C. Yu
Original Paper

Abstract

An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP’s Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source–target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

Keywords

Radionuclide Dose Rate Absorb Dose Rate Internal Exposure External Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank the IAEA for organizing the EMRAS II programme, most especially our scientific secretary Sergey Fesenko, and all other participants of the Biota Modelling Group (http://www-ns.iaea.org/projects/emras/emras2/working-groups/working-group-four.asp) who have commented upon this work. We would also like to thank Professor S.R. Jones for useful advice on the model intercomparison methodology.

References

  1. Allott R, Copplestone D, Merrill D, Oliver S (2009) Habitats assessment for radioactive substances. England & Wales Environment Agency Science Report SCO60083/SRGoogle Scholar
  2. Beaugelin-Seiller K, Jasserand F, Garnier-Laplace J, Gariel JC (2006) Modeling radiological dose in non-human species: principles, computerization, and application. Health Phys 90(5):485–493CrossRefGoogle Scholar
  3. Beresford NA, Barnett CL, Brown J, Cheng JJ, Copplestone D, Filistovic V, Hosseini A, Howard BJ, Jones SR, Kamboj S, Kryshev A, Nedveckaite T, Olyslaegers G, Saxén R, Sazykina T, Vives i Batlle J, Vives-Lynch S, Yankovich T, Yu C (2008) Inter-comparison of models to estimate radionuclide activity concentrations in non-human biota. Radiat Environ Biophys 47(4):491–514CrossRefGoogle Scholar
  4. Beresford NA, Barnett CL, Brown JE, Cheng JJ, Copplestone D, Gaschak S, Hosseini A, Howard BJ, Kamboj S, Nedveckaite T, Smith JT, Vives i Batlle J, Vives-Lynch S, Yu C (2010) Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: an international comparison of approaches. J Radiol Prot 30:341–373CrossRefGoogle Scholar
  5. Briesmeister JF (1997) MCNP—a general Monte Carlo N-particle transport code: version 4B”, LA-12625-M, version 4B.Report UC705, University of California, Los Angeles (US)Google Scholar
  6. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA tool. J Environ Radioact 99(9):1371–1383CrossRefGoogle Scholar
  7. Copplestone D, Bielby S, Jones SR, Patton D, Daniel CP, Gize I (2001) Impact assessment of ionising radiation on wildlife. R&D Publication 128, Environment Agency, UK and English NatureGoogle Scholar
  8. Copplestone D, Wood MD, Bielby S, Jones SR, Vives i Batlle J, Beresford NA (2003) Habitat regulations for Stage 3 assessments: radioactive substances authorisations. R&D Technical Report P3–101/SP1a. Environment Agency, Bristol 100 ppGoogle Scholar
  9. Golikov V, Brown JE (2003) Internal and external dose models. Deliverable report 4 for EPIC. EC Inco-Copernicus project ICA2-CT-2000–10032. Norwegian Radiation Protection Authority, ØsteråsGoogle Scholar
  10. IAEA (in press) EMRAS Biota Working Group: International comparison of models and approaches for the estimation of radiological exposure to non-human biota. In: Environmental modelling for radiation safety (EMRAS): a summary of the outcomes of the programme. International Atomic Energy Agency, ViennaGoogle Scholar
  11. ICRP (2008) The concept and use for reference animals and plants for the purposes of environmental protection. In: J Valentin (ed) ICRP Publication 108. Ann ICRP 38 (4–6):76Google Scholar
  12. Keum D-K, Jun I, Lim K-M, Choi Y-H (in press) External dose conversion coefficients to assess the radiological impact of an environmental radiation on aquatic and terrestrial animals. J Nucl Sci TechGoogle Scholar
  13. Taranenko V, Pröhl G, Gómez-Ros JM (2004) Absorbed dose rate conversion coefficients for reference biota for external photon and internal exposures. J Radiol Prot 24:A35–A62CrossRefGoogle Scholar
  14. Ulanovsky A, Pröhl G (2006) A practical method for assessment of dose conversion coefficients for aquatic biota. Radiat Environ Biophys 45(3):203–214CrossRefGoogle Scholar
  15. Ulanovsky A, Pröhl G, Gomez-Ros JM (2008) Methods for calculating dose conversion coefficients for terrestrial and aquatic biota. J Environ Radioact 99:1440–1448CrossRefGoogle Scholar
  16. USDOE (2002) A graded approach for evaluating radiation doses to aquatic and terrestrial biota. Technical Standard DOE-STD-1153–2002. Department of Energy, Washington, DCGoogle Scholar
  17. Vives i Batlle J, Jones SR, Gomez-Ros JM (2004) A method for calculation of dose per unit concentration values for aquatic biota. J Radiol Prot 24(4A):A13–A34CrossRefGoogle Scholar
  18. Vives i Batlle J, Balonov M, Beaugelin-Seiller K, Beresford NA, Brown J, Cheng J-J, Copplestone D, Doi M, Filistovic V, Golikov V, Horyna J, Hosseini A, Howard BJ, Jones SR, Kamboj S, Kryshev A, Nedveckaite T, Olyslaegers G, Pröhl G, Sazykina T, Ulanovsky A, Vives-Lynch S, Yankovich T, Yu C (2007) Inter-comparison of unweighted absorbed dose rates for non-human biota. Radiat Environ Biophys 46(4):349–373CrossRefGoogle Scholar
  19. Vives i Batlle J, Jones SR, Copplestone D (2008) Dosimetric model for biota exposure to inhaled radon daughters. Science Report SC060080. Environment Agency, Bristol, 34 ppGoogle Scholar
  20. Westinghouse (2010) UK AP1000 environment report. UKP-GW-GL-790 Report Revision 3, 350 pp. Available from https://www.ukap1000application.com/doc_pdf_library.aspx. Accessed 22/11/2010
  21. Wood MD, Beresford NA, Barnett CL, Copplestone D, Leah RT (2009) Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota. J Environ Radioact 100:1034–1052CrossRefGoogle Scholar
  22. Yankovich TL, Vives i Batlle J, Vives-Lynch S, Beresford NA, Barnett CL, Beaugelin-Seiller K, Brown JE, Cheng J-J, Copplestone D, Heling R, Hosseini A, Howard BJ, Kamboj S, Kryshev T, Nedveckaite T, Smith JT, Wood MD (2010) An international model validation exercise on radionuclide transfer and doses to freshwater biota. J Radiol Prot 30:299–340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. Vives i Batlle
    • 1
  • K. Beaugelin-Seiller
    • 2
  • N. A. Beresford
    • 3
  • D. Copplestone
    • 6
  • J. Horyna
    • 8
  • A. Hosseini
    • 4
  • M. Johansen
    • 9
  • S. Kamboj
    • 5
  • D.-K. Keum
    • 10
  • N. Kurosawa
    • 11
  • L. Newsome
    • 7
  • G. Olyslaegers
    • 1
  • H. Vandenhove
    • 1
  • S. Ryufuku
    • 11
  • S. Vives Lynch
    • 12
  • M. D. Wood
    • 13
  • C. Yu
    • 5
  1. 1.Belgian Nuclear Research CentreMolBelgium
  2. 2.Institut de Radioprotection et de Sûreté NucléaireSaint-Paul lez DuranceFrance
  3. 3.Centre for Ecology and HydrologyLancasterUK
  4. 4.Norwegian Radiation Protection AuthorityTromsøNorway
  5. 5.Argonne National LaboratoryArgonneUSA
  6. 6.School of Biological and Environmental SciencesUniversity of StirlingStirlingUK
  7. 7.England and Wales Environment AgencyBristolUK
  8. 8.SÚJB, State Office for Nuclear SafetyPrahaCzech Republic
  9. 9.ANSTO, Australian Nuclear Science and Technology OrganisationLucas HeightsAustralia
  10. 10.KAERI, Korea Atomic Energy Research InstituteYusong, TaejonRepublic of Korea
  11. 11.Visible Information Center Inc.Muramatsu, TokaimuraJapan
  12. 12.MolBelgium
  13. 13.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations