Radiation and Environmental Biophysics

, Volume 50, Issue 1, pp 199–207 | Cite as

Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model

  • Marcela A. Garabalino
  • Andrea Monti Hughes
  • Ana J. Molinari
  • Elisa M. Heber
  • Emiliano C. C. Pozzi
  • Jorge E. Cardoso
  • Lucas L. Colombo
  • Susana Nievas
  • David W. Nigg
  • Romina F. Aromando
  • Maria E. Itoiz
  • Verónica A. Trivillin
  • Amanda E. Schwint
Original Paper

Abstract

We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na 2 10 B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.

Notes

Acknowledgments

This study was supported in part by in-kind contributions from the US Department of Energy through the Idaho National Laboratory and a grant from the National Agency for the Promotion of Science and Technology of Argentina. The authors wish to acknowledge the expert advice and generous support of Dr. Claudio Devida and his team with ICP boron measurements.

References

  1. Barth RF, Coderre JA, Vicente MGH, Blue TE (2005) Boron Neutron Capture Therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002CrossRefGoogle Scholar
  2. Cardoso JE, Trivillin VA, Heber EM, Nigg DW, Calzetta O, Blaumann H, Longhino J, Itoiz ME, Bumaschny E, Pozzi E, Schwint AE (2007) Effect of Boron Neutron Capture Therapy (BNCT) on normal liver regeneration: towards a novel therapy for liver metastases. Int J Radiat Biol 83(10):699–706CrossRefGoogle Scholar
  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257CrossRefGoogle Scholar
  4. Coderre JA, Morris GM (1999) The radiation biology of Boron Neutron Capture Therapy. Radiat Res 151:1–18CrossRefGoogle Scholar
  5. Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM, Chadha M, Gebbers JO, Shady M, Slatkin DN (1998) Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149:163–170CrossRefGoogle Scholar
  6. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18CrossRefGoogle Scholar
  7. Gabel D, Fairchild RG, Larsson B (1984) The relative biological effectiveness in V79 Chinese hamster cells of the neutron capture reaction in boron and nitrogen. Radiat Res 98:307–316CrossRefGoogle Scholar
  8. Gonzalez SJ, Bonomi MR, Santa Cruz GA, Blaumann HR, Calzetta Larrieu OA, Menéndez P, Jiménez Rebagliati R, Longhino J, Feld DB, Dagrosa MA, Argerich C, Castiglia SG, Batistoni DA, Liberman SJ, Roth BM (2004) First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiat Isot 61(5):1101–1105CrossRefGoogle Scholar
  9. Heber E, Trivillin V, Nigg D, Kreimann EL, Itoiz ME, Rebagliati RJ, Batistoni D, Schwint AE (2004) Biodistribution of GB-10 (Na210B10H10) in an experimental model of oral cancer in the hamster cheek pouch. Arch Oral Biol 49:313–324CrossRefGoogle Scholar
  10. Heber EM, Trivillin VA, Nigg DW, Itoiz ME, González BN, Rebagliati RJ, Batistoni D, Kreimann EL, Schwint AE (2006) Homogeneous boron targeting of heterogeneous tumors for Boron Neutron Capture Therapy (BNCT): chemical analyses in the hamster cheek pouch oral cancer model. Arch Oral Biol 51:922–929CrossRefGoogle Scholar
  11. Heber E, Aromando RF, Trivillin VA, Itoiz ME, Nigg DW, Kreimann EL, Schwint AE (2007) Therapeutic effect of Boron Neutron Capture Therapy (BNCT) on field cancerized tissue: inhibition of DNA synthesis and lag in the development of second primary tumors in precancerous tissue around treated tumors in DMBA-induced carcinogenesis in the hamster cheek pouch oral cancer model. Arch Oral Biol 52:273–279CrossRefGoogle Scholar
  12. Heber EM, Monti Hughes A, Pozzi EC, Itoiz ME, Aromando RF, Molinari AJ, Garabalino MA, Nigg DW, Trivillin VA, Schwint AE (2010) Development of a model of tissue with potentially malignant disorders (PMD) in the hamster cheek pouch to explore the long-term potential therapeutic and/or toxic effects of different therapeutic modalities. Arch Oral Biol 55:46–51CrossRefGoogle Scholar
  13. Kankaanranta L, Seppälä T, Koivunoro H, Saarilahti K, Atula T, Collan J, Salli E, Kortesniemi M, Uusi-Simola J, Mäkitie A, Seppänen M, Minn H, Kotiluoto P, Auterinen I, Savolainen S, Kouri M, Joensuu H (2007) Boron Neutron Capture Therapy in the treatment of locally recurred head and neck cancer. Int J Radiat Oncol Biol Phys 69(2):475–482CrossRefGoogle Scholar
  14. Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61:1069–1073CrossRefGoogle Scholar
  15. Kreimann EL, Itoiz ME, Dagrosa A, Garavaglia R, Farías S, Batistoni D, Schwint AE (2001a) The hamster cheek pouch as a model of oral cancer for boron neutron capture therapy studies: selective delivery of boron by Boronophenlyalanine. Cancer Res 61:8775–8781Google Scholar
  16. Kreimann EL, Itoiz ME, Longhino J, Blaumann H, Calzetta O, Schwint AE (2001b) Boron neutron capture therapy for the treatment of oral cancer in the hamster cheek pouch model. Cancer Res (Advances in Brief) 61:8638–8642Google Scholar
  17. Locher G (1936) Biological effects and therapeutic possibilities of neutrons. Am J Roentgenol 36:1–13Google Scholar
  18. Miller M, Quintana J, Ojeda J, Langan S, Thorp S, Pozzi E, Sztejnberg M, Estryk G, Nosal R, Saire E, Agrazar H, Graiño F (2009) New irradiation facility for biomedical applications at the RA-3 reactor thermal column. Appl Radiat Isot 67(7–8 Suppl):S226–S229CrossRefGoogle Scholar
  19. Monti Hughes A, Heber EM, Pozzi E, Nigg DW, Calzetta O, Blaumann H, Longhino J, Nievas SI, Aromando RF, Itoiz ME, Trivillin VA, Schwint AE (2009) Boron Neutron Capture Therapy (BNCT) inhibits tumor development from field-cancerized tissue: an experimental study that supports a new application of BNCT. Appl Radiat Isot 67(7–8 Suppl):S313–S317CrossRefGoogle Scholar
  20. Morris GM, Coderre JA, Hopewell JW, Micca PL, Rezvani M (1994) Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium. Radiother Oncol 32(2):144–153CrossRefGoogle Scholar
  21. Obayashi S, Kato I, Ono K, Masunaga S, Suzuki M, Nagata K, Sakurai Y, Yura Y (2004) Delivery of (10)Boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy. Oral Oncol 40(5):474–482CrossRefGoogle Scholar
  22. Ono K, Masunaga S, Suzuki M, Kinashi Y, Takagaki M, Akaboshi M (1999) The combined effect of boronophenylalanine and borocaptate in Boron Neutron Capture Therapy for SCCVII tumors in mice. Int J Radiat Oncol Biol Phys 43:431–436CrossRefGoogle Scholar
  23. Pozzi E, Nigg DW, Miller M, Thorp SI, Heber EM, Zarza L, Estryk G, Monti Hughes A, Molinari AJ, Garabalino M, Itoiz ME, Aromando RF, Quintana J, Trivillin VA, Schwint AE (2009) Dosimetry and radiobiology at the new RA-3 Reactor Boron Neutron Capture Therapy (BNCT) facility: application to the treatment of experimental oral cancer. Appl Radiat Isot 67(7–8 Suppl):S309–S312CrossRefGoogle Scholar
  24. Rao M, Trivillin VA, Heber EM, Cantarelli MA, Itoiz ME, Nigg DW, Rebagliati RJ, Batistoni D, Schwint AE (2004) BNCT of 3 cases of spontaneous head and neck cancer in feline patients. Appl Radiat Isot 61(5):947–952CrossRefGoogle Scholar
  25. Roveda L, Prati U, Bakeine J, Trotta F, Marotta P, Valsecchi P, Zonta A, Nano R, Facoetti A, Chiari P, Barni S, Pinelli T, Altieri S, Braghieri A, Bruschi P, Fossati F, Pedroni P (2004) How to study boron biodistribution in liver metastases from colorectal cancer. J Chem 16:15–18Google Scholar
  26. Trivillin VA, Heber EM, Itoiz ME, Nigg D, Calzetta O, Blaumann H, Longhino J, Schwint AE (2004) Radiobiology of BNCT mediated by GB-10 and GB-10 + BPA in experimental oral cancer. Appl Radiat Isot 61:939–945CrossRefGoogle Scholar
  27. Trivillin VA, Heber EM, Nigg DW, Itoiz ME, Calzetta O, Blaumann H, Longhino J, Schwint AE (2006) Therapeutic success of Boron Neutron Capture Therapy (BNCT) mediated by a chemically non-selective boron agent in an experimental model of oral cancer: a new paradigm in BNCT radiobiology. Radiat Res 166:387–396CrossRefGoogle Scholar
  28. Trivillin VA, Heber EM, Rao M, Cantarelli MA, Itoiz ME, Nigg DW, Calzetta O, Blaumann H, Longhino J, Schwint AE (2008) Boron Neutron Capture Therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines. Radiat Environ Biophys 47(1):147–155CrossRefGoogle Scholar
  29. Wittig A, Sauerwein WA, Coderre A (2000) Mechanisms of transport of p-borono-phenylalanine through the cell membrane in vitro. Radiat Res 153(2):173–180CrossRefGoogle Scholar
  30. Yoshino K, Suzuki A, Mori Y, Kanahana H, Honda C, Mishima Y, Kobayashi T, Kanda K (1989) Improvement of solubility of p-boronophenylalanine by complex formation with monosaccharides. Strahlenther Onkol 165:127–129Google Scholar
  31. Zonta A, Prati U, Roveda L, Ferrari C, Zonta S, Clerici AM, Zonta C, Pinelli T, Fossati F, Altieri S, Bortolussi S, Bruschi P, Nano R, Barni S, Chiari P, Manzini G (2006) Clinical lessons from the first applications of BNCT on unresectable liver metastases. J Phys Conf Ser 41:484–495CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marcela A. Garabalino
    • 1
  • Andrea Monti Hughes
    • 1
  • Ana J. Molinari
    • 1
  • Elisa M. Heber
    • 1
  • Emiliano C. C. Pozzi
    • 1
    • 2
  • Jorge E. Cardoso
    • 3
  • Lucas L. Colombo
    • 3
  • Susana Nievas
    • 4
  • David W. Nigg
    • 5
  • Romina F. Aromando
    • 6
  • Maria E. Itoiz
    • 1
    • 6
  • Verónica A. Trivillin
    • 1
  • Amanda E. Schwint
    • 1
  1. 1.Department of RadiobiologyNational Atomic Energy CommissionSan Martin, Province Buenos AiresArgentina
  2. 2.Department of Research and Production ReactorsNational Atomic Energy CommissionEzeiza, Province Buenos AiresArgentina
  3. 3.Oncology Institute Angel H. RoffoCiudad Autónoma de Buenos AiresArgentina
  4. 4.Department of ChemistryNational Atomic Energy CommissionSan Martin, Province Buenos AiresArgentina
  5. 5.Idaho National LaboratoryIdaho FallsUSA
  6. 6.Department of Oral Pathology, Faculty of DentistryUniversity of Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations