Radiation and Environmental Biophysics

, Volume 50, Issue 1, pp 155–166

Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926

  • Franka Pluder
  • Zarko Barjaktarovic
  • Omid Azimzadeh
  • Simone Mörtl
  • Anne Krämer
  • Sylvia Steininger
  • Hakan Sarioglu
  • Dariusz Leszczynski
  • Reetta Nylund
  • Arvi Hakanen
  • Arundhathi Sriharshan
  • Michael J. Atkinson
  • Soile Tapio
Original Paper


High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100–500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease. The vascular endothelium plays a pivotal role in the regulation of cardiac function and is therefore a potential target tissue. We report here that low-dose radiation induced rapid and time-dependent changes in the cytoplasmic proteome of the human endothelial cell line EA.hy926. The proteomes were investigated at 4 and 24 h after irradiation at two different dose rates (Co-60 gamma ray total dose 200 mGy; 20 mGy/min and 190 mGy/min) using 2D-DIGE technology. Differentially expressed proteins were identified, after in-gel trypsin digestion, by MALDI-TOF/TOF tandem mass spectrometry, and peptide mass fingerprint analyses. We identified 15 significantly differentially expressed proteins, of which 10 were up-regulated and 5 down-regulated, with more than ± 1.5-fold difference compared with unexposed cells. Pathways influenced by the low-dose exposures included the Ran and RhoA pathways, fatty acid metabolism and stress response.



Dulbecco’s Modified Eagle’s Medium


Poly(methyl methacrylate)


Hypoxanthine Aminopterin Thymidine


Single nucleotide polymorphism






Trifluoroacetic acid

Supplementary material

411_2010_342_MOESM1_ESM.pdf (244 kb)
Supplementary material 1 (PDF 243 kb)


  1. Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45(1):55–75CrossRefGoogle Scholar
  2. Amundson SA, Lee RA, Koch-Paiz CA, Bittner ML, Meltzer P, Trent JM, Fornace AJ Jr (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1(6):445–452Google Scholar
  3. Ashmore JP, Krewski D, Zielinski JM, Jiang H, Semenciw R, Band PR (1998) First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol 148(6):564–574Google Scholar
  4. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38(10):1278–1295CrossRefGoogle Scholar
  5. Bhattacharya M, Babwah AV, Ferguson SS (2004) Small GTP-binding protein-coupled receptors. Biochem Soc Trans 32(Pt 6):1040–1044Google Scholar
  6. Bjerke H, Jarvinen H, Grimbergen TW, Grindborg JE, Chauvenet B, Czap L, Ennow K, Moretti C, Rocha P (1998) Comparison of two methods of therapy level calibration at 60Co gamma beams. Phys Med Biol 43(10):2729–2740CrossRefGoogle Scholar
  7. Boerma M, Burton GR, Wang J, Fink LM, McGehee RE Jr, Hauer-Jensen M (2006) Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition. Blood Coagul Fibrinolysis 17(3):173–180CrossRefGoogle Scholar
  8. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna 10(2):185–191CrossRefGoogle Scholar
  9. Budzyn K, Sobey CG (2007) Vascular rho kinases and their potential therapeutic applications. Curr Opin Drug Discov Devel 10(5):590–596Google Scholar
  10. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203CrossRefGoogle Scholar
  11. Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100(8):1128–1141CrossRefGoogle Scholar
  12. Demirci S, Nam J, Hubbs JL, Nguyen T, Marks LB (2009) Radiation-induced cardiac toxicity after therapy for breast cancer: interaction between treatment era and follow-up duration. Int J Radiat Oncol Biol Phys 73(4):980–987CrossRefGoogle Scholar
  13. Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci 80(12):3734–3737CrossRefADSGoogle Scholar
  14. Falk E, Fernandez-Ortiz A (1995) Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 75(6):3B–11BCrossRefGoogle Scholar
  15. Foley TD, Petro LA, Stredny CM, Coppa TM (2007) Oxidative inhibition of protein phosphatase 2A activity: role of catalytic subunit disulfides. Neurochem Res 32(11):1957–1964CrossRefGoogle Scholar
  16. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376CrossRefADSGoogle Scholar
  17. Guo R, Ma H, Gao F, Zhong L, Ren J (2009) Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction. J Mol Cell Cardiol 47(2):228–237CrossRefGoogle Scholar
  18. Heo J (2008) Redox regulation of Ran GTPase. Biochem Biophys Res Commun 376(3):568–572CrossRefGoogle Scholar
  19. Heo J, Campbell SL (2005) Mechanism of redox-mediated guanine nucleotide exchange on redox-active Rho GTPases. J Biol Chem 280(35):31003–31010CrossRefGoogle Scholar
  20. Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Sotomayor MA (2009) Endothelial dysfunction and aging: an update. Ageing Res Rev 9:142–152Google Scholar
  21. Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6(3):103–112CrossRefGoogle Scholar
  22. Hoving S, Heeneman S, Gijbels MJ, te Poele JA, Russell NS, Daemen MJ, Stewart FA (2008) Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(-/-) mice. Int J Radiat Oncol Biol Phys 71(3):848–857CrossRefGoogle Scholar
  23. Ivanov VK, Maksioutov MA, Chekin SY, Petrov AV, Biryukov AP, Kruglova ZG, Matyash VA, Tsyb AF, Manton KG, Kravchenko JS (2006) The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys 90(3):199–207CrossRefGoogle Scholar
  24. Jacob P, Ruhm W, Walsh L, Blettner M, Hammer G, Zeeb H (2009) Cancer risk of radiation workers larger than expected? Occup Environ Med 66:789–796Google Scholar
  25. Kreuzer M, Kreisheimer M, Kandel M, Schnelzer M, Tschense A, Grosche B (2006) Mortality from cardiovascular diseases in the German uranium miners cohort study, 1946–1998. Radiat Environ Biophys 45(3):159–166CrossRefGoogle Scholar
  26. Kuzelova K, Hrkal Z (2008) Rho-signaling pathways in chronic myelogenous leukemia. Cardiovasc Hematol Disord Drug Targets 8(4):261–267CrossRefGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(259):680–685CrossRefADSGoogle Scholar
  28. Landar A, Zmijewski JW, Dickinson DA, Le Goffe C, Johnson MS, Milne GL, Zanoni G, Vidari G, Morrow JD, Darley-Usmar VM (2006) Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. Am J Physiol Heart Circ Physiol 290(5):H1777–H1787CrossRefGoogle Scholar
  29. Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P (2008) A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res 169(1):99–109CrossRefGoogle Scholar
  30. Luscher TF, Richard V, Tschudi M, Yang ZH, Boulanger C (1990) Endothelial control of vascular tone in large and small coronary arteries. J Am Coll Cardiol 15(3):519–527CrossRefGoogle Scholar
  31. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293CrossRefGoogle Scholar
  32. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci 105(47):18525–18530CrossRefADSGoogle Scholar
  33. Marsden PA, Goligorsky MS, Brenner BM (1991) Endothelial cell biology in relation to current concepts of vessel wall structure and function. J Am Soc Nephrol 1(7):931–948Google Scholar
  34. McGeoghegan D, Binks K, Gillies M, Jones S, Whaley S (2008) The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. Int J Epidemiol 37(3):506–518CrossRefGoogle Scholar
  35. Mitchel RE, Burchart P, Wyatt H (2007) Fractionated, low-dose-rate ionizing radiation exposure and chronic ulcerative dermatitis in normal and Trp53 heterozygous C57BL/6 mice. Radiat Res 168(6):716–724CrossRefGoogle Scholar
  36. Nakajima T, Taki K, Wang B, Ono T, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M (2008) Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays. J Radiat Res (Tokyo) 49(6):661–666CrossRefGoogle Scholar
  37. Neuwald AF, Kannan N, Poleksic A, Hata N, Liu JS (2003) Ran’s C-terminal, basic patch, and nucleotide exchange mechanisms in light of a canonical structure for Rab, Rho, Ras, and Ran GTPases. Genome Res 13(4):673–692CrossRefGoogle Scholar
  38. Nylund R, Leszczynski D (2004) Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4(5):1359–1365CrossRefGoogle Scholar
  39. Nylund R, Leszczynski D (2006) Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics 6(17):4769–4780CrossRefGoogle Scholar
  40. Okudaira N, Uehara Y, Fujikawa K, Kagawa N, Ootsuyama A, Norimura T, Saeki K, Nohmi T, Masumura K, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Ono T (2010) Radiation dose-rate effect on mutation induction in spleen and liver of gpt delta mice. Radiat Res 173(2):138–147CrossRefGoogle Scholar
  41. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res 160(4):381–407CrossRefGoogle Scholar
  42. Ramsby ML, Makowski GS, Khairallah EA (1994) Differential detergent fractionation of isolated hepatocytes: biochemical, immunochemical and two-dimensional gel electrophoresis characterization of cytoskeletal and noncytoskeletal compartments. Electrophoresis 15(2):265–277CrossRefGoogle Scholar
  43. Rodel F, Hantschel M, Hildebrandt G, Schultze-Mosgau S, Rodel C, Herrmann M, Sauer R, Voll RE (2004) Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hy.926 endothelial cells after low-dose X-irradiation. Int J Radiat Biol 80(2):115–123CrossRefGoogle Scholar
  44. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126CrossRefGoogle Scholar
  45. Seasholtz TM, Brown JH (2004) Rho signaling in vascular diseases. Mol Interv 4(6):348–357CrossRefGoogle Scholar
  46. Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25(9):1767–1775CrossRefGoogle Scholar
  47. Sokolov M, Panyutin IG, Neumann R (2006) Genome-wide gene expression changes in normal human fibroblasts in response to low-LET gamma-radiation and high-LET-like 125IUdR exposures. Radiat Prot Dosimetry 122(1–4):195–201Google Scholar
  48. Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M, Daemen M (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168(2):649–658CrossRefGoogle Scholar
  49. Sugihara T, Murano H, Tanaka K, Oghiso Y (2008) Inverse dose-rate-effects on the expressions of extra-cellular matrix-related genes in low-dose-rate gamma-ray irradiated murine cells. J Radiat Res (Tokyo) 49(3):231–240CrossRefGoogle Scholar
  50. Taki K, Wang B, Nakajima T, Wu J, Ono T, Uehara Y, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Magae J, Kakimoto A, Nenoi M (2009) Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate gamma-rays. J Radiat Res (Tokyo) 50(3):241–252CrossRefGoogle Scholar
  51. Tastet C, Lescuyer P, Diemer H, Luche S, van Dorsselaer A, Rabilloud T (2003) A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis 24(11):1787–1794CrossRefGoogle Scholar
  52. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077CrossRefGoogle Scholar
  53. Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544CrossRefGoogle Scholar
  54. Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G (2004) Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat Res 161(6):622–632CrossRefGoogle Scholar
  55. Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292(5):H2023–H2031CrossRefGoogle Scholar
  56. Zmijewski JW, Landar A, Watanabe N, Dickinson DA, Noguchi N, Darley-Usmar VM (2005) Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 33(Pt 6):1385–1389Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Franka Pluder
    • 1
  • Zarko Barjaktarovic
    • 1
  • Omid Azimzadeh
    • 1
  • Simone Mörtl
    • 1
  • Anne Krämer
    • 1
  • Sylvia Steininger
    • 1
  • Hakan Sarioglu
    • 2
  • Dariusz Leszczynski
    • 3
  • Reetta Nylund
    • 3
  • Arvi Hakanen
    • 3
  • Arundhathi Sriharshan
    • 4
  • Michael J. Atkinson
    • 1
    • 5
  • Soile Tapio
    • 1
  1. 1.Institute of Radiation BiologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Department of Protein ScienceHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  3. 3.STUK—Radiation and Nuclear Safety AuthorityHelsinkiFinland
  4. 4.Division of Radiation CytogeneticsHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  5. 5.Department of Radiation OncologyKlinikum Rechts der Isar, Technische Universität MünchenMunichGermany

Personalised recommendations