Radiation and Environmental Biophysics

, Volume 49, Issue 4, pp 549–565

Whole-body to tissue concentration ratios for use in biota dose assessments for animals

  • Tamara L. Yankovich
  • Nicholas A. Beresford
  • Michael D. Wood
  • Tasuo Aono
  • Pål Andersson
  • Catherine L. Barnett
  • Pamela Bennett
  • Justin E. Brown
  • Sergey Fesenko
  • J. Fesenko
  • Ali Hosseini
  • Brenda J. Howard
  • Mathew P. Johansen
  • Marcel M. Phaneuf
  • Keiko Tagami
  • Hyoe Takata
  • John R. Twining
  • Shigeo Uchida
Review

Abstract

Environmental monitoring programs often measure contaminant concentrations in animal tissues consumed by humans (e.g., muscle). By comparison, demonstration of the protection of biota from the potential effects of radionuclides involves a comparison of whole-body doses to radiological dose benchmarks. Consequently, methods for deriving whole-body concentration ratios based on tissue-specific data are required to make best use of the available information. This paper provides a series of look-up tables with whole-body:tissue-specific concentration ratios for non-human biota. Focus was placed on relatively broad animal categories (including molluscs, crustaceans, freshwater fishes, marine fishes, amphibians, reptiles, birds and mammals) and commonly measured tissues (specifically, bone, muscle, liver and kidney). Depending upon organism, whole-body to tissue concentration ratios were derived for between 12 and 47 elements. The whole-body to tissue concentration ratios can be used to estimate whole-body concentrations from tissue-specific measurements. However, we recommend that any given whole-body to tissue concentration ratio should not be used if the value falls between 0.75 and 1.5. Instead, a value of one should be assumed.

References

  1. Adam C, Garnier-Laplace J, Baudin JP (1997) Uptake from water, release and tissue distribution of 54Mn in the rainbow trout (Oncorhynchus mikiss Walbaum). Environ Pollut 97:29–38CrossRefGoogle Scholar
  2. Allen P (1995) Soft-tissue accumulation of lead in the blue tilapia, Oreochromis aureus (Steindachner), and the modifying effects of cadmium and mercury. Biol Trace Elem Res 50:193–208CrossRefGoogle Scholar
  3. Andersson P, Garnier-Laplace J, Beresford NA, Copplestone D, Howard BJ, Howe P, Oughton D, Whitehouse P (2009) Protection of the environment from ionising radiation in a regulatory context (PROTECT): proposed numerical benchmark values. J Environ Radioact 100:1100–1108CrossRefGoogle Scholar
  4. Azcue JM, Dixon DG (1994) Effects of past mining activities on the arsenic concentration in fish from Moira Lake, Ontario. J Great Lakes Res 20:717–724CrossRefGoogle Scholar
  5. Baudin JP, Véran MP, Adam C, Garnier-Laplace J (1997) 60Co transfer from water to the rainbow trout (Oncorhynchus mykiss Walbaum). Arch Environ Contam Toxicol 33:230–237CrossRefGoogle Scholar
  6. Beak Consultants Limited (1987) Survey of data on the radionuclide content of fish in Canada. INFO-0231-1Google Scholar
  7. Beresford NA, Crout NMJ, Mayes RW, Howard BJ, Lamb CS (1998) Dynamic distribution of radioisotopes of cerium, ruthenium and silver in sheep tissues. J Environ Radioact 38:317–338CrossRefGoogle Scholar
  8. Beresford NA, Mayes RW, Crout NMJ, MacEachern PJ, Dodd BA, Barnett CL, Lamb CS (1999) The transfer of cadmium and mercury to sheep tissues. Environ Sci Technol 33:2395–2402CrossRefGoogle Scholar
  9. Beresford NA, Howard BJ, Mayes RW, Lamb CS (2007) The transfer of radionuclides from saltmarsh vegetation to sheep tissues and milk. J Environ Radioact 98:36–49CrossRefGoogle Scholar
  10. Beresford NA, Copplestone D, Brown JE (2009) Wildlife transfer database: user guidance version 1, pp 23. Available from: http://www.wildlifetransferdatabase.org
  11. Bourlat Y, Millies-Lacroix JC, Chiappini R, Le Petit G, Bablet JP (1997) Determination of long-lived radionuclides in biological samples collected at Mururoa by a scientific delegation headed by the IAEA. J Radioanal Nucl Chem 226(1–2):15–22CrossRefGoogle Scholar
  12. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Prohl G, Ulanovsky A (2008) The ERICA Tool. J Environ Radioact 99:1371–1383CrossRefGoogle Scholar
  13. Carvalho FP (1988) Po-210 in marine organisms: a wide range of natural radiation dose domains. Radiat Prot Dosimetry 24(1/4):113–117Google Scholar
  14. Clulow V, Davé NK, Lim TP, Avadhanula R (1998) Radium-226 in water, sediments and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environ Pollut 99:13–28CrossRefGoogle Scholar
  15. Cooke JA, Andrews SM, Johnson MS (1990a) Lead, zinc, cadmium and fluoride in small mammals from contaminated grassland established on fluorspar tailings. Water Air Soil Pollut 51:43–54CrossRefGoogle Scholar
  16. Cooke JA, Andrews SM, Johnson MS (1990b) The accumulation of lead, zinc, cadmium and fluoride in the wood mouse (Apodemus sylvaticus). Wat Air Soil Pollut 51:55–63CrossRefGoogle Scholar
  17. Copplestone D, Wood MD, Bielby S, Jones SR, Vives i Batlle J, Beresford NA (2003) Habitat regulations for stage 3 assessments: radioactive substances authorisations. R&D Technical Report P3-101/Sp1a. Environment Agency, Bristol, pp 100. http://www.ceh.ac.uk/PROTECT/pages/documents/Habitatsregulationsforstage3assessment.pdf
  18. Coughtrey PJ, Jackson D, Jones CH, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems, a critical review of data. A.A. Balkema, RotterdamGoogle Scholar
  19. Cowx IG (1982) Concentrations of heavy metals in the tissues of trout Salmo trutta and char Salvelinus alpinus from two lakes in North Wales. Environ Pollut (Series A) 29:101–110CrossRefGoogle Scholar
  20. du Preez HH, Steyn GJ (1992) A preliminary investigation of the concentration of selected metals in the tissues and organs of the tigerfish (Hydrocynus vittatus) from the Olifants River, Kruger National Park, South Africa. Water SA 18:131–136Google Scholar
  21. Fesenko S, Fesenko J, Sanzharova N, Karpenko E, Titov I (2010a) Radionuclide transfer to freshwater biota species: review of Russian language studies. J Environ Radioact (submitted)Google Scholar
  22. Fesenko S, Fesenko J, Sanzharova N, Karpenko E, Titov I (2010b) Radionuclide transfer to marine biota species: review of Russian language studies. Radiat Environ Biophys (this issue). doi:10.1007/s00411-010-0324-y
  23. Fontaine Y (1960) Radioactive contamination of aquatic media and organisms. AEC-tr-5358Google Scholar
  24. Gabler S, Kirchgessner M, Windisch W (1997) Isotope-dilution technique for determination of endogenous faecal excretion and true absorption of selenium in 75Se labelled rats. J Anim Physiol Anim Nutr 78:10–19Google Scholar
  25. Giles MA (1993) Rare earth elements as internal batch marks for rainbow trout: retention, distribution, and effects on growth of injected dysprosium, europium, and samarium. Trans Am Fish Soc 122:289–297CrossRefGoogle Scholar
  26. Gjelsvik R, Brown J (2009) Po-210 and other radionuclides in terrestrial and freshwater environments. NKS-181. Nordisk kernesikkerhedsforskning, Roskilde, pp 41Google Scholar
  27. Gomaa MNE, Abouarab AAK, Badawy A, Khayria N (1995) Distribution pattern of some heavy metals in Egyptian fish organs. Food Chem 53:385–389CrossRefGoogle Scholar
  28. Guimaraes JRD (1988) Experiments on radionuclide accumulation by fishes from the Angra Dos Reis region of Brazil. IAEA, Vienna, Austria. Final Report, Nov 1988. 13 pGoogle Scholar
  29. Hameed PS, Asokan R, Iyengar MAR, Kannan V (1993) The freshwater mussel Parreysia favidens (Benson) as a biological indicator of polonium-210 in a riverine system. Chem Ecol 8(1):11–18CrossRefGoogle Scholar
  30. Hegstrom LJ, West SD (1989) Heavy metal accumulation in small mammals following sewage sludge application in forests. J Environ Qual 18:345–349CrossRefGoogle Scholar
  31. Honda K, Sahrul M, Hidaka H, Tatsukawa R (1983) Organ and tissue distribution of heavy metals, and their growth-related changes in Antarctic fish, Pagothenia borchgrevinki. Agric Biol Chem 47:2521–2532Google Scholar
  32. Hosseini A, Beresford NA, Brown JE, Jones DG, Phaneuf M, Thørring H, Yankovich TL (2010) Background dose rates to reference animals and plants arising from exposure to naturally occurring radionuclides in aquatic environments. J Radiol Prot 30:235–264CrossRefGoogle Scholar
  33. ICRP (International Commission on Radiological Protection) (1975) Reference man: anatomical, physiological and metabolic characteristics. ICRP Publication 23Google Scholar
  34. ICRP (International Commission on Radiological Protection) (1991) A framework for assessing the impact of ionising radiation on non-human species. ICRP Publication 91Google Scholar
  35. ICRP (International Commission on Radiological Protection) (2008a) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37, ElsevierGoogle Scholar
  36. ICRP (International Commission on Radiological Protection) (2008b) Environmental protection: the concept and use of reference animals and plants. ICRP Publication 108. Ann ICRP 38(4–6):179–229Google Scholar
  37. Ireland MP (1977) Lead retention in toads Xenopus laevis fed increasing levels of lead-contaminated earthworms. Environ Pollut 12:85–92CrossRefGoogle Scholar
  38. Johansen MP, Twining JR (2010) Radionuclide concentration ratios in Australian terrestrial wildlife and livestock: data compilation and analysis. Radiat Environ Biophys (this issue). doi:10.1007/s00411-010-0318-9
  39. Little CA (1980) Plutonium in a grassland ecosystem. In: Hanson WC (ed) Transuranic elements in the environment, pp 420–440Google Scholar
  40. Loumbourdis NS, Wray D (1998) Heavy-metal concentration in the frog Rana ridibunda from a small river of Macedonia, Northern Greece. Environ Int 24:427–431CrossRefGoogle Scholar
  41. Martin P, Hancock GJ, Johnston A, Murray AS (1998) Natural-series radionuclides in traditional North Australian aboriginal foods. J Environ Radioact 40:37–58CrossRefGoogle Scholar
  42. McDonald P, Baxter MS, Fowler SW (1993) Distribution of radionuclides in mussels, winkles and prawns. Part 1. Study of organisms under environmental conditions using conventional radio-analytical techniques. J Environ Radioact 18:181–202CrossRefGoogle Scholar
  43. McMahon JW, Docherty AE, Judd JMA, Gentner S-R (1986) Determination of ultra trace amounts of cobalt in fish by graphite furnace Zeeman effect atomic absorption spectrometry. Int J Environ Anal Chem 24:297–303CrossRefGoogle Scholar
  44. Meinhold AF, Hamilton LD (1990) Radium concentration factors and their use in health and environmental risk assessment. In: Ray JP, Engelhardt FR (eds) Produced water: technological/environmental issues and solutions. Proceedings of the 1992 international produced water symposium. 4–7 Feb 1992, San Diego, California Environmental Science Research, vol 46, pp 293–302. Plenum Press, New YorkGoogle Scholar
  45. Miramand P, Fowler SW, Guary JC (1992) Experimental study on vanadium transfer in the benthic fish Gobius minutus. Mar Biol 114:349–353CrossRefGoogle Scholar
  46. Nakahara M, Hirano S, Ishii T, Koyanagi T (1979) Accumulation and excretion of cobalt-60 taken up from seawater by marine fishes. Bull Jpn Soc Sci Fish 45:1423–1428Google Scholar
  47. Nevissi A, Schell WR (1975) Po-210, Pu-240 in biological and water samples from the Bikini and Eniwetok atolls. Nature 255(5506):321–323CrossRefADSGoogle Scholar
  48. Noël-Lambot F, Bouquegneau JM (1977) Comparative study of toxicity, uptake and distribution of cadmium and mercury in the sea water adapted eel Anguilla anguilla. Bull Environ Contam Toxicol 18:418–424CrossRefGoogle Scholar
  49. Pankakoski E, Koivisto I, Hyvarinen H, Terhivuo J, Tahka M (1994) Experimental accumulation of lead from soil through earthworms to common shrews. Chemosphere 29:1639–1649CrossRefGoogle Scholar
  50. Pentreath RJ (1973) The accumulation and retention of 59Fe and 58Co by the plaice Pleuronectes platessa L. J Exp Mar Biol Ecol 12:315–326CrossRefGoogle Scholar
  51. Pentreath RJ (1977a) The accumulation of 110mAg by the plaice Pleuronectes platessa L. and the thornback ray Raja clavata L. J Exp Mar Biol Ecol 29:315–325CrossRefGoogle Scholar
  52. Pentreath RJ (1977b) The accumulation of cadmium by the plaice Pleuronectes platessa L. and the thornback ray Raja clavata L. J Exp Mar Biol Ecol 30:223–232CrossRefGoogle Scholar
  53. Pentreath RJ, Lovett MB (1978) Transuranic nuclides in plaice (Pleuronectes platessa) from the north-eastern Irish Sea. Mar Biol 48:19–26CrossRefGoogle Scholar
  54. Read HJ, Martin MH (1993) The effect of heavy metals on populations of small mammals from woodlands in Avon (England) with particular emphasis on metal concentrations in Sorex araneus L. and Sorex minutus L. Chemosphere 27:2197–2211CrossRefGoogle Scholar
  55. Reed JR (1971) Uptake and excretion of 60Co by black bullheads Ictalurus melas (Rafinesque). Health Phys 21:835–844CrossRefGoogle Scholar
  56. Rehwoldt R, Karimian-Teherani D, Altmann H (1976) Distribution of selected metals in tissue samples of carp, Cyprinus carpio. Bull Environ Contam Toxicol 15:374–377CrossRefGoogle Scholar
  57. Rouleau C, Tjälve H, Gottofrey J, Pelletier É (1995) Uptake, distribution and elimination of 54Mn(II) in the brown trout (Salmo trutta). Environ Toxicol Chem 14:483–490Google Scholar
  58. Sato I, Matsusaka N, Tsuda S, Suzuki T, Kobayashi H (1997) Effect of dietary zinc content on 65Zn metabolism in mice. J Vet Med Sci 59:1017–1021CrossRefGoogle Scholar
  59. Shaheed K, Somasundaram SN, Shahul-Hameed P, Iyengar MAR (1997) A study of polonium-210 distribution aspects in the riverine ecosystem of Kaveri Tiruchirappalli, India. Environ Pollut 95:371–377CrossRefGoogle Scholar
  60. Shahul-Hameed P, Shaheed K, Somasundaram SSN (1997) A study on distribution of natural radionuclide polonium-210 in a pond ecosystem. J Biosci 22:627–634CrossRefGoogle Scholar
  61. Skwarzec B, Falkowski L (1988) Accumulation of Po-210 in Baltic invertebrates. J Environ Radioact 8:99–109CrossRefGoogle Scholar
  62. Somero GN, Chow TJ, Yancey PH, Snyder CB (1977) Lead accumulation rates in tissues of the estuarine teleost fish, Gillichthys mirabilis: salinity and temperature effects. Arch Environ Contam Toxicol 6:337–348CrossRefGoogle Scholar
  63. Stansley W, Roscoe DE (1996) The uptake and effects of lead in small mammals and frogs at a trap and skeet range. Arch Environ Contam Toxicol 30:220–226CrossRefGoogle Scholar
  64. Suzuki Y, Nakahara M, Nakamura R, Ueda T (1979) Roles of food and sea water in the accumulation of radionuclides by marine fish. Bull Jap Soc Sci Fish 45:1409–1416Google Scholar
  65. Swanson SM (1983) Levels of 226Ra, 210Pb and TOTALU in fish near a Saskatchewan uranium mine and mill. Health Phys 45:67–80CrossRefGoogle Scholar
  66. Takata H, Aono T, Tagami K, Uchida S (2010a) Determination of naturally occurring uranium concentrations in seawater, sediment, and marine organisms in Japanese estuarine areas. J Nucl Sci Technol (submitted)Google Scholar
  67. Takata H, Aono T, Tagami K, Uchida S (2010b) Concentration ratios of stable elements for selected biota in Japanese estuarine areas. Radiat Environ Biophys (this issue). doi:10.1007/s00411-010-0317-x
  68. Talmage SS, Walton BT (1990) Comparative evaluation of several small mammal species as monitors of heavy metals, radionuclides, and selected organic compounds in the environment. ORNL, Environmental Sciences Division, Publication No. 3534Google Scholar
  69. Tateda Y, Hirano S, Koyanagi T (1985) Accumulation of iron-59 by black-fish Girella punctata from food organisms. Bull Jap Soc Sci Fish 51:2067–2072Google Scholar
  70. Taylor FG, Parr PD, Dahlman RC (1975) Distribution of chromium in vegetation and small mammals adjacent to cooling towers. National Symposium on Radioecology, Corvallis, p 22Google Scholar
  71. Templeton WL, Brown VM (1964) The relationship between the concentrations of calcium, strontium and strontium-90 in wild brown trout, Salmo trutta L. and the concentrations of the stable elements in some waters of the United Kingdom, and the implications in radiological health studies. Int J Air Water Pollut 8:49–75Google Scholar
  72. Thomas P, Sheard JW, Swanson S (1994) Uranium series radionuclides, polonium-210 and lead-210, in the lichen-caribou-wolf food chain of the Northwest Territories. Environment CanadaGoogle Scholar
  73. US DOE (United States Department of Energy) (2004) RESRAD-BIOTA: a tool for implementing a graded approach to biota dose evaluation. RESRAD-user’s guide, version 1. Interagency Steering Committee on Radiation Standards (ISCORS) Technical Report 2004-02. Jan 2004Google Scholar
  74. Vanderploeg HA, Parzyck DC, Wilcox WH, Kercher JR, Kaye SV (1975) Bioaccumulation factors for radionuclides in freshwater biota. Environmental Sciences Division, Publication No. 783Google Scholar
  75. Weber DN, Eisch S, Spieler RE, Petering DH (1992) Metal redistribution in largemouth bass (Micropterus salmoides) in response to restrainment stress and dietary cadmium: Role of metallothionein and other metal-binding proteins. Comp Biochem Physiol 101C:255–262Google Scholar
  76. Williamson P, Evans PR (1972) Lead: levels in roadside invertebrates and small mammals. Bull Environ Contam Toxicol 8:280–288CrossRefGoogle Scholar
  77. Windisch W, Kirchgessner M (1997) Calcium and zinc exchange in 65Zn-labelled rats at different levels of calcium supply. In: Fischer PWF, L’Abbe MR, Cockell KA, Gibson RS (eds) Trace element in man and animals—9: Proceedings of the ninth international symposium on trace elements in man and animals. NRC Research Press, Ottawa, pp 17–18Google Scholar
  78. Wong KM, Noshkin VE, Suprenant L, Bowen VT (1970) Plutonium-239 in some marine organisms and sediments. In: Hardy EP (ed) Fallout program, health and safety laboratory report HASL-227. USAEC, New York, pp I25–I33Google Scholar
  79. Wood MD, Beresford NA, Semenov DV, Yankovich TL, Copplestone D (2010) Radionuclide transfer to reptiles. Radiat Environ Biophys (this issue). doi:10.1007/s00411-010-0321-1
  80. Yankovich TL (2002) Towards an improved ability to estimate internal dose to non-human biota: development of conceptual models for reference non-human biota. In: Proceedings of third international symposium on the protection of the environment from ionising radiation (SPEIR3), July 2002. Darwin, AustraliaGoogle Scholar
  81. Yankovich TL (2009) Mass balance approach to estimating radionuclide loads and concentrations in edible fish tissues using stable analogues. J Environ Radioact 100:795–801CrossRefGoogle Scholar
  82. Yankovich TL, Beaton D (2000) Concentration ratios of stable elements measured in organs of terrestrial, freshwater and marine non-human biota for input into internal dose assessment: a literature review. COG-99-106-I. Atomic Energy Canada Ltd, Ontario, p 119Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tamara L. Yankovich
    • 1
  • Nicholas A. Beresford
    • 3
  • Michael D. Wood
    • 4
  • Tasuo Aono
    • 5
  • Pål Andersson
    • 6
  • Catherine L. Barnett
    • 3
  • Pamela Bennett
    • 2
  • Justin E. Brown
    • 7
  • Sergey Fesenko
    • 8
  • J. Fesenko
    • 9
  • Ali Hosseini
    • 7
  • Brenda J. Howard
    • 3
  • Mathew P. Johansen
    • 10
  • Marcel M. Phaneuf
    • 8
  • Keiko Tagami
    • 5
  • Hyoe Takata
    • 5
  • John R. Twining
    • 10
  • Shigeo Uchida
    • 5
  1. 1.Environment and ForestrySaskatchewan Research Council (SRC)SaskatoonCanada
  2. 2.AREVA Resources CanadaSaskatoonCanada
  3. 3.Centre for Ecology & Hydrology Lancaster, Lancaster Environment CentreLancasterUK
  4. 4.School of Environmental SciencesUniversity of LiverpoolLiverpool, MerseysideUK
  5. 5.Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological SciencesChibaJapan
  6. 6.Swedish Radiation Safety AuthorityStockholmSweden
  7. 7.Department of Emergency Preparedness and Environmental RadioactivityNorwegian Radiation Protection AuthorityØsteråsNorway
  8. 8.Department of Nuclear Sciences and Applications, Agency’s LaboratoriesInternational Atomic Energy AgencyViennaAustria
  9. 9.Russian Institute of Agricultural Radiology and AgroecologyObninskRussia
  10. 10.Australian Nuclear Science and Technology OrganisationMenaiAustralia

Personalised recommendations